Разведение Грибов

Волшебник Изумрудного Города
Команда форума
₲172
[SIZE=10pt]ИГОРЬ ЮРЬЕВИЧ СТЕНИН[/SIZE]​

[SIZE=10pt]НАДЕЖДА ПАВЛОВНА СТЕНИНА[/SIZE]​

[SIZE=18pt]РАЗВЕДЕНИЕ[/SIZE] [SIZE=14.5pt]ГРИБОВ[/SIZE]
[SIZE=10pt]НА ДАЧНОМ УЧАСТКЕ,[/SIZE]​

[SIZE=10pt]В КВАРТИРЕ,[/SIZE]​

[SIZE=10pt]В ГАРАЖЕ[/SIZE]​

[SIZE=10pt]Эта книга предоставляет возможность совершить увлекательное путешествие в загадочный многоликий мир грибов, открывает тайны повседневной жизни грибного организма, его удивительную систему приспособления к жестким условиям окружающей среды, рассказывает о продуцируемых грибной клеткой биологически активных веществах, с успехом применяемых в медицине и в различных отраслях промышленности. На ее страницах приведены технологические приемы, обеспечивающие разведение на огородной грядке или дома таких грибов, как боровик, масленок, шампиньон, боровик, сморчок, вешенка или опенок, остается только выбрать, какой гриб вам больше по душе.[/SIZE]

[SIZE=18pt]ЧТО ТАКОЕ ГРИБЫ[/SIZE]
[SIZE=10pt]Грибы — это обширная группа организмов, насчитывающая в своем составе около 100 тысяч видов. Они занимают отдельное место среди представителей животного и растительного мира. Тем не менее, по способу питания (всасывание, а не заглатывание пищи) они напоминают растения, по наличию в качестве «запасного» продукта — гликогена, а не крахмала — они близки к животным.[/SIZE]

[SIZE=10pt]Грибница видимая и невидимая[/SIZE]

[SIZE=10pt]Между собой грибы различаются внешним видом, местами обитания и физиологическими функциями. Общий их признак определяется наличием одинакового вегетативного тела — грибницы, или мицелия. Грибница представляет собой систему очень тонких, ветвящихся нитей — гиф, находящихся на поверхности питательной среды (субстрате), где живет гриб, либо внутри нее. Самые сложные на первый взгляд грибные ткани состоят из сплетающихся, часто плотно срастающихся нитчатых гиф, причем каждая такая гифа имеет возможность удлиняться самостоятельно лучеобразно. Грибные гифы имеют по диаметру микроскопические размеры. Для измерения микроскопических объектов обычно пользуются измерительной единицей в 0,001 миллиметра, что обозначается греческой буквой μ. Гифы в большинстве случаев имеют величину диаметра от 1 до 10 μ, реже 20 μ и более. Зато в длину гифы достигают иной раз размеров в десятки сантиметров.[/SIZE]

[SIZE=10pt]Развитие грибницы подчиняется некоторой закономерности. Относительно центра, от которого начинается ее жизнь (из споры), грибная ткань располагается кругом. Это хорошо иллюстрирует пример «ведьминых колец», когда плодовыми телами шляпочных грибов образуются более-менее правильные круги на поверхности места, где произрастает грибница. В почве радиальное расположение грибницы проявляется почти беспрепятственно, приблизительно в одной плоскости и на небольшой глубине, обычно всего в несколько сантиметров, так как грибы — организмы, нуждающиеся в воздухе. Исходя из места, куда попала спора или в котором произошло первичное заражение, грибница, простираясь кругами, захватывает участок за участком, доказывая, таким образом, преимущество данного вида перемещения.[/SIZE]

[SIZE=10pt][/SIZE]​

[SIZE=10pt]Развитие грибницы вешенки в чашке Петри, на питательной среде. В центре — кусочек ножки плодового тела.[/SIZE]

[SIZE=10pt]Старые, центральные части грибницы могут отмирать, но гифы, продолжая удлиняться по периферии, спасают положение и продолжают бодрое шествие гриба по новой территории.[/SIZE]

[SIZE=10pt]Как размножаются грибы[/SIZE]

[SIZE=10pt]Грибы, в отличие от растений, размножаются семенами особого вида — спорами. У спор нет ни корешка, ни стебелька, ни семядолей, характерных для семян растений. Спора — это чаще всего одна клетка, которая, прорастая нитевидным ростком, дает начало жизни грибницы. Необходимая для этого энергия извлекается из капельки масла, которое в крошечном количестве присутствует в споре, играя роль запасного элемента питания.
Часто размножение может осуществляться частями грибницы, которые, отделяясь от основной массы грибницы, способны развиваться самостоятельно.
[/SIZE]

[SIZE=10pt]Санитары природы[/SIZE]

[SIZE=10pt]Грибы играют большую роль в круговороте веществ в природе, в разложении останков животных и растений, попадающих в почву, образовании в почве органических веществ, определяющих ее плодородие.
В тканях грибов отсутствует хлорофилл, при помощи которого растения обеспечивают свою жизнедеятельность. При наличии света хлорофилл поглощает и перерабатывает углекислоту воздуха, извлекая из нее необходимый для всех живых организмов углерод. Углерод — это вещество, без которого жизнь любого организма просто немыслима. Его запасы находятся в виде углекислоты в воздухе. Нормальный ход развития жизни на Земле зависит от круговорота углерода, который протекает в следующем порядке.
Зеленые растения, получая углерод из воздуха, развиваются вполне независимо. Травоядные животные используют его в готовом виде, питаясь растениями. Хищники, в свою очередь, питаясь травоядными, получают готовый продукт от них. Люди, как всеядные существа, получают углерод от зеленых растений и от животных. Травоядные, хищники и всеядные, таким образом, считаются категорией организмов, существующих за счет других живых форм. Однако при таких условиях естественно предположить, что запас углерода в воздухе, в конце концов, истощится, и течение жизни прекратится. Небольшой корректировкой к такому мрачному прогнозу, правда, является то обстоятельство, что накопленный в телах живых организмов углерод отчасти сгорает и выделяется в воздух в процессе их дыхания. Подобному возврату подлежит только небольшая часть углерода, тогда как большее количество остается в растительных и животных тканях в виде разнообразных органических соединений, составляя главную массу тела живых существ. По окончании жизненного пути накопленный в тканях углерод непроизводительно выбрасывается из оборота. Так можно отметить, что каменный уголь, добываемый из недр земли, есть не что иное, как запас углеродистых соединений в тканях первобытных растений, когда-то покрывавших поверхность земли. Чрезмерное накопление углеродистых останков являлось бы, несомненно, угрозой для продолжения жизни, не будь существования ряда бесхлорофилльных организмов, специально приспособленных природой на добычу углерода из готовых органических соединений. Выбирая в качестве питательной среды отмершие ткани, они способствуют их скорейшему разложению. Грибы, конечно, возглавляют отряд этих своеобразных санитаров и вместе с ними довершают круговорот углерода.
[/SIZE]

[SIZE=10pt]Строение грибов[/SIZE]

[SIZE=10pt]У грибов вегетативные органы — гифы являются довольно однородными по своему строению. Существенным признаком, делящим грибы на две категории — низшую и высшую, считается наличие или отсутствие в гифах специальных образований — перегородок. Часто грибница сильно разрастается и обильно разветвляется, но перегородок в ней нет и она, несмотря на значительные размеры, всегда остается одноклеточной. В других же случаях уже с самого начала своего развития грибница проявляет стремление к образованию поперечных перегородок, выявляя тем самым свою многоклеточность.
Грибы, стоящие на низшей ступени развития, в подавляющем большинстве случаев имеют всегда одноклеточную грибницу, тогда как грибы с более сложной организацией — многоклеточную. Из низших грибов наиболее известными представителями выступают различные амебоиды и некоторые виды дрожжей. Из высших — это грибы, образующие более-менее видимые и весомые плодовые тела, включающие съедобные и несъедобные виды (белый гриб, рыжик, мухомор и т.п.), а также некоторые микроскопические грибы.
Строение плодовых тел высших шляпочных грибов довольно загадочно и интересно, поэтому остановимся на нем подробней.
У многих видов в самом начале развития плодовое тело закрыто общим покрывалом, наподобие чехла. По мере роста плодового тела покрывало разрывается, его остатки сохраняются у основания ножки и на шляпке в виде разбросанных по ее поверхности хлопьев. Существует еще один вид покрывала — так называемое частное покрывало. Оно образуется срастанием гиф шляпки и ножки и соединяет собой край шляпки с верхней третью ножки. Частное покрывало также подвергается разрушению при развитии плодового тела и напоминает о себе либо кольцом па ножке (у опенка, у кольцевика), либо отдельными волокнами, свивающими подобно паутине с края шляпки. Кстати, последний признак особенно характерен для грибов-паутинников (паутинника красного, паутинника фиолетового), что позволило дать им такое название.
Шляпка грибов служит весьма определенной цели: на ней располагается слой с созревающими спорами, и, естественно, ей приходится защищать его от неблагоприятных воздействий извне собственной более-менее мясистой тканью. Кроме того, ее мякоть является специальным «резервуаром» воды, которую использует спороносный слой в процессе отстрела спор. Покров шляпки состоит из сплошного слоя кутикулы — кожицы, которая часто разрывается на протяжении развития гриба и остается в виде сети чешуек. Кутикула исполняет функцию защиты плодового тела от отрицательных факторов (например, избытка испарения), а также от возможных механических повреждений.
Мякоть шляпки состоит из двух видов тканей — основной и соединительной. Основная ткань образуется толстостенными гифами, а соединительная — более тонкими и изогнутыми. Кроме основной и соединительной ткани шляпки некоторых видов содержат гифы так называемой проводящей системы. Например, у рыжика имеются сосудистые гифы, содержащие млечный сок оранжево-желтого цвета, у млечника наблюдаются такие же гифы с белым содержимым, у волнушки, серушки, груздя картина аналогична, и все они объединяются по этому признаку в группу «плачущих» грибов, слезы которым заменяют выделения сока разноцветной окраски.
Основу плодовых тел шляпочных грибов составляют вегетативные гифы, которые делятся на генеративные и скелетные. Генеративные гифы дают начало скелетным, они, как правило, тонкостенные, ветвящиеся. Скелетные гифы придают прочность плодовому телу, они толстостенные и, чаще всего, довольно прямые.
[/SIZE]

[SIZE=10pt][/SIZE]​

[SIZE=10pt]Типы спороносного слоя грибов (нижней стороны шляпки): а — трубчатый; 6 — пластинчатый; в—гладкий; г — шиловидный.[/SIZE]

[SIZE=10pt]Нижняя сторона шляпки плодовых тел, как указывалось выше, является местом сосредоточения спор, а также специальных выростов, в которых они созревают. По форме она бывает трубчатой и пластинчатой, а также шиповатой.
Трубчатая форма включает в себя наличие специальных ячеек, схожих по внешнему виду с трубочками. Наиболее характерна для белых грибов, моховиков, подберезовика, подосиновика.
Пластинчатая форма именуется так из-за ячеек, имеющих вид пластинок. Этой формой одарены такие грибы, как опенок, вешенка, навозник, сыроежка и многие другие виды.
Шиповатой форме свойственны особые сосочки или шипики. Ею пользуются, в основном, грибы-дождевики. Трубочки, пластинки и шипики обеспечивают защиту споровым выростам и самим спорам в процессе их созревания.
[/SIZE]

[SIZE=10pt]Как грибы покоряют пространство[/SIZE]

[SIZE=10pt]Созревшие споры катапультируются с поверхности шляпки при помощи специального механизма. Однако длина прыжка довольно невелика и позволяет им выбраться только наружу, за пределы спороносного слоя. Тут они подхватываются воздушными течениями, образующимися из- за разницы температур между шляпкой гриба и окружающей воздушной средой. В отличие от ветра или сквозняка это особые, так называемые «температурные течения», совершенно неосязаемые для человека и даже для специальных приборов. Они имеют направление снизу вверх, вертикально, обеспечивая перенос спор от шляпки гриба к тем слоям воздуха, где уже проявляется действие ветра и сквозных течений. При таком способе освобождения спор, шляпке необходимо соблюдать определенную форму расположения по отношению к земле. Особенно это касается грибов с трубчатой поверхностью, поскольку споры из просвета трубочек должны выпасть за пределы плодового тела, что возможно только при строго вертикальной ориентации шляпки. Это требование соблюдается грибами неукоснительно, и здесь уместно привести следующий характерный пример. Мухомор, сорванный в лесу и положенный на стол, в темноте продолжает расти, но ножка его изгибается так, что шляпка снова принимает вертикальную ориентацию по отношению к поверхности стола.
У дереворазрушающих грибов плодовые тела развиваются на нижней поверхности валежных стволов, обращенной к земле. При перемене положения ствола начинает образовываться новое плодовое тело на той стороне, которая обращена к земле.
Основным условием удачного рассеивания спор является их массовое образование. Обилие спор у большинства грибов настолько велико, что часто приближается к астрономическим цифрам. Если взять шляпку обыкновенного зрелого шампиньона и, отрезав ножку, положить ее плашмя на кусок белой бумаги, то через несколько часов можно будет наблюдать на этой бумаге черно-фиолетовую массу спор. Их количество было подсчитано и оказалось равным в среднем около 40 миллионам штук. Если продолжить данный эксперимент в течение пары суток, то спор на бумаге может накопиться до 80 миллионов. Навозный гриб копринус образует за час существования своего плодового тела 100 миллионов спор, а за 5 часов — более 5 миллиардов! Дождевики средних размеров производят 7 биллионов спор! Ввиду такой мощности аппарата спорообразования, совершенно потрясающей воображение, возникает вопрос, почему природа, обычно нерасточительная, оказалась в данном случае столь щедрой и допустила, на первый взгляд, непроизводительный расход органического вещества? При том огромном количестве спор, которые носятся в воздухе,
можно было бы ожидать полного засилия грибных организмов, своего рода грибного беспредела. Но дело в том, что существует определенный количественный отбор, в результате которого далеко не все споры, а только незначительная их часть попадает на благоприятную почву и имеет возможность прорастать.
Количество спор, доходящих до стадии прорастания и дающих жизнь новому поколению, исчисляется долями процента. Намного в лучшем положении, конечно, оказываются всеядные грибы — пенициллы, аспергиллы, которые в состоянии использовать для своего развития практически любой субстрат, начиная от пластмасс и заканчивая недопитым, оставленным в кружке чаем.
Более развитые формы грибных организмов имеют более узкую специализацию, вследствие чего вынуждены долго блуждать в поисках подходящего субстрата, и не всегда такие поиски заканчиваются успехом. Только массовое освоение спорами воздушного пространства, в результате которого происходит более-менее значительное распределение их на поверхности разнообразных субстратов, спасает, в какой-то мере, положение и противодействует различного рода случайностям.
В распределении грибных спор играют весьма важную роль атмосферные осадки. Наибольшее число спор наблюдается в сухую погоду, и чем дольше продолжается засуха, тем более засоряется воздух. Но если начинают выпадать осадки, то количество спор, как и атмосферной пыли, значительно уменьшается. После нескольких дней непрерывных дождей при тихой погоде встречаются редкие одиночные споры. Таким образом, дождь очищает воздух. Если дождь сопровождается ветром, то спор в воздухе оказывается больше, поскольку, очевидно, они заносятся издалека.
Распределение грибных спор может также происходить при содействии животных организмов. В этом процессе принимают участие самые разнообразные представите-
ли животного мира, от простейших до высших млекопитающих. Особо деятельными в этом отношении являются насекомые. Споры могут переноситься как снаружи, так и внутри организма своих спутников. В первом случае они просто приклеиваются (щетинки, пух, перья, слизистая оболочка, волоски и т.п.). Во втором случае споры, попадая вместе с поедаемым грибом внутрь, проходят неповрежденными и невредимыми через пищеварительный тракт животных. Оболочка спор, состоящая из особой разновидности устойчивой клетчатки, не поддается влиянию кислот, находящихся в пищеварительных органах.
Некоторым грибам свойственны довольно нетрадиционные методы распространения спор. Например, у гриба-дождевика споры запрятаны до поры до времени в закрытом плодовом теле. К моменту их созревания, наверху плодового тела открывается отверстие и при малейшем сотрясении из него вылетает коричневое пылеобразное облачко. Чем дольше будет сотрясаться почва, на которой находится гриб (от поступи проходящих мимо животных) тем больше из него вылетит спор.
Порховка чернеющая, или заячья картошка, характеризуется тем, что ее зрелое плодовое тело отрывается от корневидного грибного тяжа и совершенно свободно переносится ветром с одного места на другое — «порхает». При этом споры разлетаются в разные стороны. Облегчает передвижение гриба то, что его форма напоминает колобок, которому по плечу преодолеть любое расстояние.
Гриб копринус, или навозник, отличается очень малым сроком жизни. Его плодовое тело существует у мелких видов всего несколько часов, у более крупных — около 48 часов. Спустя это время плодовое тело самоуничтожается прямо на глазах: шляпка гриба чернеет и расплывается, превращаясь в черную жидкую массу, содержащую многочисленные споры. Такое явление называется автолизом, то есть разложением собственной ткани. Поскольку у многих копринусов шляпка колокольчатая, продолговатая, то выпадение спор было бы затруднено без автолиза (из-за нераскрытого спороносящего слоя). Созревание спор происходит не одновременно во всей шляпке, а последовательно снизу вверх. Поэтому автолиз настигает не сразу всю мякоть шляпки, а поочередно слой за слоем, снизу вверх. По мере опадения спор край шляпки оплывает и не мешает опаданию досозревающих вышележащих спор.
[/SIZE]

[SIZE=10pt]Стадии развития грибницы[/SIZE]

[SIZE=10pt]Грибница ввиду своего строения является особо чувствительной ко всякого рода внешним влияниям окружающей среды и плохо переносит любые крайности. В особенности это относится к молодой, бесцветной грибнице, каковой она представляется на первых порах своего существования. Поэтому, природа естественно стремилась к тому, чтобы, так или иначе, предохранить ее от вредных условий.
Наиболее существенной охраной является покров из тканей субстрата. Большинство грибов обитает внутри тканей заселенных ими субстратов, и на поверхность их грибница выступает только в фазе плодоношения в виде плодоносцев, наделенных функцией свободного рассеивания спор. В качестве примера можно обратиться к многим видам трутовиков, паразитирующих на деревьях. Их копытообразные плодовые тела выступают в виде наростов на стволах, но грибница, на которой развиваются эти плодовые тела, находится в толще древесины и живет там много десятков лет. Она, несомненно, была бы обречена на гибель в зимнее время, так как не смогла бы выдержать морозов. Но, находясь под прикрытием коры и слоя древесины, она без всякого вреда переносит в состоянии оцепенения низкие температуры в 20–30
° С и более градусов ниже нуля. Лишь только наступает оттепель, как
она уже снова оживает. Этот способ предохранения грибницы играет в жизни гриба важную роль. Однако существуют независимо от него и другие приспособления защиты, направленные уже к усилению устойчивости самой грибной ткани. Они состоят, в основном, в следующем. Молодой росток и образующаяся из него гифа в первое время имеют бесцветную, тонкую оболочку, состоящую из клетчатки. Такая оболочка очень нежна и хрупка. Но постепенно происходит ее утолщение, причем при этом она пропитывается (инкрустируется) более устойчивыми веществами (пигментами и смолами). В некоторых случаях оболочка сохраняет свою прозрачность, оставаясь бесцветной, но по большей части она окрашивается в различные цвета, принимая черную или коричневую окраску.[/SIZE]

[SIZE=10pt]Однако, несмотря на все эти предосторожности, жизнедеятельность грибницы подвергается многим испытаниям, которые не всегда успешно ею преодолеваются. Одинаково вредными для нее являются чрезмерная засуха, избыток влажности, слишком высокая или слишком низкая температура. Каждый отдельный вид имеет свои определенные требования в этом отношении и развивается нормально только при особых условиях. При этом амплитуда колебаний, в пределах которых конкретный вид грибов в состоянии проявлять свою жизнедеятельность, различна опять же в зависимости от вида. Существуют некоторые средние значения внешних факторов, определяющие развитие жизненных функций, и которые более-менее соответствуют большинству видов грибов. Например, самая минимальная температура окружающей среды соответствует 4–6° С, оптимальная — 16–25[/SIZE]° С, и самая высокая — 30–35° С. При оптимальном значении температуры грибница получает возможность как для благоприятного, стабильного развития, так и для перехода в фазу размножения (плодоношения). По мере опускания к минимуму или поднятия к максимуму, жизнедеятельность постепенно замедляется, некоторые функции, в первую очередь воспроизводящие, прекращаются, а сами вегетативные органы (грибница) переходят в состояние оцепенения, которое продолжается до тех пор, пока снова не установится температура более близкая к оптимуму.
Гибкость грибного организма очень велика и состояние оцепенения может продолжаться даже в том случае, если температура понижается за минимальное значение. Гораздо опасней превышение значения температуры выше максимальной отметки. Многое здесь зависит от продолжительности пребывания гриба за пределами свойственной ему амплитуды температуры. Краткое охлаждение или небольшое перегревание может пройти совершенно бесследно, но более длительное пребывание за установленными нормами оказывается губительным и оцепенение заканчивается смертью.
В отношении влажности существуют также пределы, причем избыток не менее опасен, чем недостаток. Засуха убийственна для грибов, в особенности, если она продолжительна.
Сравнительная чувствительность грибов к условиям окружающей среды объясняется главным образом тем, что их обычные вегетативные органы, то есть грибница, содержит определенное количество воды, часто очень значительное (80–90%). Такое положение создает угрозу для сохранения грибов как вида, так как нет гарантии, что экологическая обстановка, создающая оптимальные пределы, будет все время постоянной. Поэтому чрезвычайно важно, чтобы организмы имели возможность адекватно реагировать при наступлении неблагоприятных для существования условий. У грибов такая возможность реализуется в способности создавать покоящиеся стадии грибницы, что позволяет избежать им гибели. Пребывая в данной стадии, грибница как бы впадает в спячку, не отзываясь на отрицательные изменения окружающих условий даже в том случае, если они превышают максимально и минимально возможные. Это состояние обусловливается тем, что часть грибницы, предназначенная для пережидания периода покоя, выделяет воду и остается, проще говоря, в засушенном виде, чем чувствительность самой грибной ткани доводится до минимума. Поскольку спячка может продолжаться довольно долго, то этим достигается не только защита от вредного влияния среды, но и более или менее значительное удлинение общей продолжительности жизни.

[SIZE=10pt]Покоящиеся стадии грибницы[/SIZE]

[SIZE=10pt]Среди типов покоящихся стадий грибницы можно выделить две, наиболее характерные для большинства видов грибов. Первый тип — это ризоморфы.
Ризоморфы представляют собой образование в виде шнуров. Ветвистые сети из этих шнуров можно увидеть в почве, на корнях и нижней части стволов деревьев, между корой и древесиной. Наиболее известны и изучены ризоморфы у опенка. Они достигают иной раз значительных размеров в несколько метров длиной. Сделав поперечный срез шнура можно увидеть, что он состоит из плотной коричневой или черной оболочки мертвых клеток и из белой сердцевины с живыми гифами, заполненными большим количеством жира. Жир, являясь высококалорийным запасным продуктом, скрашивает грибнице довольно убогий образ жизни во время переживания стадии покоя. Оболочка ризоморф достаточно стойка и непроницаема, вследствие чего ни минусовая температура, ни засуха не могут добраться до живых грибных клеток и повредить их. Карантин будет продолжаться до тех пор, пока природные катаклизмы не сойдут на нет и не наступит некоторое смягчение условий окружающей среды. Тогда из концов ветвей ризоморф начнут выползать на свет первые гифы-разведчики, проверяя на ощупь снизошедшее благоденствие. В случае удовлетворительного результата начнется массовое образование уже нормального вида сплетений гиф, и жизнь грибного организма вновь забьет ключом.
Второй тип покоящейся стадии грибницы — это наиболее законченная и совершенная ее форма — склероций. В склероции уплотнение грибных гиф настолько велико, что получается довольно твердое тело различной формы и объема. Снаружи оно покрыто окрашенной, пропитанной различными веществами оболочкой, внутри содержит бесцветное образование живых гиф, клетки которых заполнены жиром.
Очевидно, что особой разницы в строении у ризоморф и склероциев нет. Отличие состоит в том, что у ризоморф сохранилось нитчатое расположение гиф, вследствие чего они представляют собой шнуровидное образование. Склероции же чаще всего имеют форму рожка, шарика или подушки.
Развитие склероция можно проследить на примере поражения низшими грибами семечковых плодовых деревьев, влекущее за собой появление так называемой плодовой гнили. Причем образование склероция может иметь две разновидности. К первой относится склероций, состоящий исключительно из грибных гиф (он сопутствует загниванию листьев и плодов растений). Ко второй разновидности можно отнести склероций, образующийся не только при участии грибницы, но и в той или иной части ткани субстрата. При этом какой-либо плод, например яблоко, принимает черную окраску и кажется будто лакированным. Это происходит оттого, что гриб не входит в стадию плодоношения, а «консервирует» ткань плода для поддержания своей жизнедеятельности в течение периода покоящейся стадии. Если сделать разрез пораженного яблока, то окажется, что вся ткань плода пронизана гифами грибницы, причем клетки субстрата (яблока) несколько съеживаются, теряя воду и ссыхаются (мумифицируются), приобретая способность сохраняться некоторое время не загнивая (до2–3
 лет). В этом случае мумии-плода, преобладающая масса склероция состоит из мякоти. Однако все зависит от расположения склероция по отношению к субстрату. Если клубок гиф образуется вне тканей субстрата или в его пустотах, то преимущество в объеме остается за грибной тканью.
При необыкновенно быстром росте клубков грибницы, превращающихся в склероции, бывает, что в них включаются посторонние предметы. Так, объемистые склероции некоторых трутовиков, достигающие диаметра 20–30[/SIZE] см и образующиеся в почве у корней деревьев, нередко в своем бурном росте захватывают комки земли, камни, ветви, сухие листья.
Иной раз склероции проявляют интересное свойство мимикрии, то есть внешнего сходства с другими предметами. Наиболее любопытный случай этого наблюдается у низшего гриба склеротиум-семен. Он очень часто встречается в большом количестве на кочанах капусты, хранящихся в подвалах в виде небольших шариков диаметром 1–2 мм. Цвет шариков сначала желтоватый, затем со временем темно-коричневый. В созревшем состоянии склероции и по форме и по цвету напоминают семена капусты, и в связи с этим бывают случаи, когда огородники их усердно собирают и засевают ими парники, рассчитывая получить капустную рассаду. Настоящую природу этих склероциев нетрудно выявить на срезах, когда обнаруживается белая, однородная сердцевина.
Другой случай мимикрии встречается у тех склероциев, которые ютятся в ягодах черники. Пораженные ягоды не чернеют как здоровые, нормальные, а становятся беловато-зеленоватыми. В природе существует разновидность черники с белыми ягодами, цвет которых обусловлен отсутствием пигментации. Это явление так называемого наследственного альбинизма. Отличить белые ягоды черники от склероциев можно уже потому, что они сочны, тогда как превращенные в мумии пораженные ягоды сухие. Подобные же случаи наследственного альбинизма обнаружены на бруснике, клюкве и голубике, которые также поражаются своими видами склероциев.
Склероции развиваются на поверхности или внутри различных органов растений, начиная от корней и корневищ, стеблей, ветвей и листьев и кончая цветами, плодами, ягодами и семенами. Прорастают склероции, то есть пробуждаются к жизни, после некоторого периода покоя, когда окружающие условия среды становятся благоприятными для жизнедеятельности гриба. В этом случае, если массой склероция накоплено оптимальное количество питательных веществ, из нее последовательно развивается плодоношение. При росте плодовых тел склероций подвергается частичному или полному распаду. Например, при образовании плодоносцев навозников-копринусов склероций полностью исчезает за 7–9дней, отдавая все свое содержимое растущим тканям.
Как было уже отмечено раньше, отличительной чертой грибницы является ее верхушечный рост. Разрастание в двух или трех плоскостях наблюдается в виде исключения у некоторых спор, из которых непосредственно развиваются так называемые плодовместилища (у редких видов низших грибов), но у грибницы оно, как правило, не встречается. Поэтому не приходится говорить о наличии у грибов такого вида ткани, как паренхима, столь характерной и распространенной у растений. Такая ткань у грибов вообще не существует. Тем не менее, хорошо известно, что плодовые тела шляпочных грибов достигают больших размеров и представляются довольно сложными по своему строению. Однако, как бы ни были разнообразны по форме и внушительны по размерам эти плодоносцы, все они неизменно состоят исключительно из нитчатых гиф.

[SIZE=18pt]ТКАНИ ГРИБОВ И ИХ ФУНКЦИИ[/SIZE]
[SIZE=10pt]Несмотря на то, что грибы по своему происхождению непосредственно примыкают к простейшим существам и стоят на более низкой ступени развития по сравнению с животными и растительными организмами, все же в пределах вида эволюция проявилась в достаточно широкой мере. Жизнь низшего организма ограничена во времени и несложна по своим функциям. Она поддерживается благодаря способности вида быстро и неограниченно размножаться, сохраняя количественное превосходство. Это довольно примитивный способ самозащиты, не требующий какого-то самосовершенствования. По мере усложнения организма, естественно, что индивидуальная жизнь приобретает все большую ценность. Такой курс эволюции и привел грибы к их теперешнему состоянию. У стоящих на нижней ступени развития одна клетка выполняет все функции, напрягая все усилия на размножение. Но постепенно начинается деление на вегетативные части (грибница) и на органы размножения. Затем происходит деление вегетативных органов. В дальнейшем идет развитие различных стадий грибницы, предназначенных для определенных целей (покоящиеся стадии) и усложнение плодовых тел в целях лучшего их предохранения как органов размножения от вредных воздействий внешней среды. Все это, наконец, в конечном итоге приводит к образованию грибных тканей, физиологически приспособленных к определенным функциям и потому отличающихся рядом признаков.
Происхождение грибных тканей может быть двояким: первый случай, нормальный, присущий всем грибным организмам, — это развитие из гифы. Гифы, переплетаясь, образуют пучки, которые дают развитие шнуровой ткани. Второй способ — это образование клубочков. В каком-нибудь месте на своем протяжении гифа дает большее или меньшее количество боковых ветвей, которые сплетаются в клубок (как, например, при образовании склероция). При срастании гиф или при образовании клубочков получается более-менее плотная ткань. Такая ткань у грибов по характеру выполнения функций делится на несколько типов.
[/SIZE]

[SIZE=10pt]Покровная, или защитная, ткань[/SIZE]

[SIZE=10pt]Она служит для защиты всех остальных тканей от внешних воздействий и является одной из наиболее резко выраженных у грибов. Состоит из ярко-окрашенных, плотно переплетенных гиф.
Покровная ткань хорошо развита на верхней поверхности шляпочных грибов, таких как, например, сыроежек или мухомора, она выглядит пленкой, легко отделяющейся от шляпки, наподобие эпидермы листа растений.
Оболочка ризоморф или склероциев, состоящая из одного или нескольких слоев омертвелых клеток, тоже характерный пример покровной ткани.
Очень часто покровные части представляются весьма плотными с одеревеневшими клетками с утолщенной оболочкой, как то можно увидеть у некоторых трутовиков. Поверхность покровной ткани может быть гладкой и голой, покрытой различными образованиями. У трюфелей, например, наблюдаются бугорки или бородавки, у рыжиков — студенистый налет, у чешуйчатки — сети чешуек, у ряда видов — сплетение волосков, образующих сплошной войлочный покров.
[/SIZE]

[SIZE=10pt]Органы питания[/SIZE]

[SIZE=10pt]Грибы «принимают пищу» исключительно в форме раствора, проникающего в грибную клетку через оболочку. Питательный раствор поглощается всей поверхностью грибницы, находящейся с ним в соприкосновении.
Нередко случается так, что грибница распределяется как внутри субстрата, так и на его поверхности (воздушная грибница). Функция питания выпадает на долю той части грибницы, которая находится внутри субстрата, в непосредственном контакте с питательными соками. Однако никакого ущемления «прав» воздушной грибницы в данном случае не происходит, и она исправно получает свой «паек», а при прикрытии ее субстратом также станет хорошо усваивать растворы, как и погруженные с самого начала части.
Когда мы говорим о всасывающей ткани, имеются в виду только деятельные части вегетативных органов, то есть нормальная грибница. Что же касается покоящихся стадий, то у них всасывающая способность не проявляется и при пробуждении в жизнь дальнейшее развитие протекает за счет накопленных у них питательных веществ в форме белков и особенно жиров.
[/SIZE]

[SIZE=10pt]Проводящая ткань[/SIZE]

[SIZE=10pt]Как правило, специальной проводящей ткани у грибов не существует, и питательные соки у большинства видов распределяются всасыванием или через соединительные отверстия смежных клеток по всем вегетативным и репродуктивным тканям. Проводящая способность грибных гиф очень велика, и соки циркулируют в них без задержки. Например, у белого гриба, у подосиновика питательные вещества переносятся внутриклеточной жидкостью при температуре 20°С за 1 час на 10–12 см. Такая скорость зависит от повышенного испарения и очень скоро надает при повышении влажности воздуха, при котором испарение снижается.
Иногда у некоторых видов можно выявить более сложное и целесообразное устройство, состоящее из сплетения гиф и предназначенное для возможно быстрого и обильного переноса, главным образом, воды. Такая специальная организация проводящей ткани, напоминающая собой систему сосудистых пучков у высших растений, присуща, например, домовому грибу, который вызывает разрушение древесины в постройках не только нижних этажей, где количество влаги вполне обеспечено, но также в верхних этажах. Гриб использует все закоулки данного здания благодаря разветвленной сети шнуроподобных гиф. Гифы способны проводить воду в избытке на какое угодно расстояние и поднимаются в постройках из подвалов до крыш, даже по косякам дверей и окон, отчасти по стенам, всюду пронося с собой воду.[/SIZE]

[SIZE=10pt]Запасные ткани[/SIZE]

[SIZE=10pt]Эти ткани играют существенную роль у грибов. Они обеспечивают их беспрепятственное дальнейшее развитие при прекращении питания извне. Здесь необходимо отметить, что речь идет не столько о специальных тканях, сколько о частях организма, в которых сосредотачиваются запасные материалы для своевременного использования. Основными запасными элементами грибов являются жировые вещества в виде масел и углеводов, заменяющих собой крахмал (широко распространенный у растений). Кроме того, используется и гликоген, который характерен как запасное вещество в животных организмах. Грибы, как и животные, вполне могут его синтезировать. Во всех органах грибов, мобилизованных исполнять обязанности запасных тканей, можно находить тот или иной из названных элементов, либо все вместе.
Классическим примером запасной ткани могут служить споры, если трактовать этот термин в данном случае в широком значении этого слова. Споры физиологически заменяют семена высших растений и подобно им должны быть снабжены запасными веществами. Разложение этих веществ на питательные продукты обеспечивает начальный период роста гифы, происходящей из споры. Если рассмотреть спору под микроскопом, то всегда можно обнаружить в ней некоторое количество масла в виде преломляющих свет шаровидных капель.
Не менее типичными запасными элементами являются покоящиеся стадии грибницы-склероции. Запасную ткань в них представляет сердцевина, а клетки оболочки составляют покровную защитную ткань.
К запасной ткани можно также отнести сумки у сумчатых грибов. При образовании в них спор, они оказываются заполненными гликогеном. Гликоген используется созревающими спорами и после их готовности исчезает из сумок, будучи полностью употребленным.
[/SIZE]

[SIZE=10pt]Механическая ткань[/SIZE]

[SIZE=10pt]Под этим названием подразумевается та часть или части организма, которые придают ему необходимую прочность и фиксируют его форму. У высших растений механическая ткань складывается из клеток с утолщенными стенками, так называемых склеренхимных клеток. Эти клетки располагаются не как попало, а по определенной закономерности в целях достижения наибольшего результата при наименьшей затрате материала.
Склеренхимноподобные клетки с утолщенной оболочкой можно встретить в шнурах домового гриба.
Наибольшего развития механическая ткань достигает в плодовых телах высших грибов. Причем у одних видов склеренхимное строение ножки приводит к одеревенению ткани, как, например, у гриба подаксиса пестичного, распространенного в сухих степях. В других случаях не всегда можно наблюдать утолщение клеточных стенок в ножке. 
Необходимое сопротивление излому достигается за счет волокнистого строения параллельно расположенных гиф, естественно более устойчивых в горизонтальном, чем в продольном направлении, в котором они легко расщепляются. Само собой разумеется, что сопротивление будет находиться в зависимости от диаметра ножки, и мы видим, что при подобном строении ножки бывают очень толстыми, как, например, у подосиновика или у белого гриба. Это вызывает необходимость расточительного пользования органическим веществом. Однако нередко встречается более экономичный и целесообразный тип построения ножки — в виде полой трубочки. Принцип здесь тот же, что и применяемый в механике при постройке мостов или других сооружений из полых металлических частей. В этом случае затраты органического вещества малы, а между тем сопротивление излому довольно велико в силу определенной эластичности, что не требует чрезмерного утолщения клеточных стенок. Наличие пустой полости в ножке характерно для многих шляпочных грибов.
Оригинальное приспособление механической ткани бывает у видов, основное распространение спор которых ориентировано на насекомых. Задача, следовательно, состоит в том, чтобы облегчить насекомым доступ к спороносному слою плодового тела, издающего во время созревания трупных запах, что, как известно, является приманкой для некоторых видов насекомых. Плодовое тело представляется в виде яйца, находящегося на поверхности почвы или в ее верхних слоях. Ко времени созревания верхняя часть оболочки лопается и из нее сравнительно быстро выступает удлиненная ножка в 10–25
 см длиной, на вершине которой располагается спороносная ткань. На удлинение ножки требуется около 36 часов, после чего начинается постепенное ослизнение шляпки и происходит разложение плодового тела. В этом процессе главную роль играет не столько рост гиф, сколько их необыкновенная растяжимость.[/SIZE]

[SIZE=10pt]Выделительная, или выводная, ткань[/SIZE]

[SIZE=10pt]Она довольно широко распространена у грибов. Гифы многих видов выделяют на своей поверхности смолистые вещества, кристаллы щавелевокислой извести. Плотный сплошной налет извести наблюдается на протяжении гиф грибницы шампиньона. Выделение извести зависит от индивидуальных особенностей, а также от условий питания, но, как правило, оно имеет место преимущественно в молодом возрасте, что объясняется более деятельным обменом веществ.
Грибы имеют фактически настоящие выводные, или выделительные, ткани, которые в достаточной степени разделены. Прежде всего, следует остановиться на млечных сосудах, присущих, например рыжику. Рассматривая внимательно плодовое тело рыжика, нетрудно заметить, что ткани ножки и шляпки не однородны, а довольно резко отличаются. Основная масса состоит из тонких цилиндрических гиф, образующих у периферии сплошной слой. В середине шляпки и ножки в эту основную ткань вклиниваются скопления клеток с утолщенными стенками. На разрезе они образуют овальные или округлые островки в виде розетки, в центре которой располагается тонкая гифа, заполненная водянистым содержимым. В нитчатой ткани, на границе с утолщенными клетками, и находятся млечные сосуды. У них более значительные размеры, они имеют растяжимые стенки, часто сплетающиеся в букву Н. Сосуды пронизывают все плодовое тело. Содержимое млечного сока составляет сложный химический комплекс из красящих веществ (пигментов), из смол и жиров. Встречаются также белки, гликоген. Окраска сока бывает различной — красная, молочно-белая, зеленая, иногда изменяющаяся в присутствии воздуха от окисления.
[/SIZE]

[SIZE=10pt]Ассимиляционная ткань[/SIZE]

[SIZE=10pt]У грибов она отсутствует, так как, не обладая хлорофиллом, они не в состоянии ассимилировать углекислоту из воздуха. Поскольку у грибов не имеется ни устьиц, ни воздушных камер, столь характерных для высших растений, то не приходится говорить и о наличии каких-либо специальных дыхательных грибных тканей. Но, тем не менее, даже в самых плотных тканях, какими являются склероции и ризоморфы, всегда имеются промежутки, через которые внутренние ткани входят в непосредственное соприкосновение с окружающим воздухом, проникающим свободно между сплетениями гиф.
Процесс дыхания, то есть поглощения кислорода и выделения углекислоты, производится всей поверхностью живой гифы.
Как можно видеть из вышеприведенного изложения, функции грибных тканей не так резко разграничены, как-то имеет место у высших растений, у которых такое деление пошло дальше. Часто одни и те же гифы исполняют несколько функций, что обусловливает большую гибкость грибов в приспособлении к условиям окружающей среды.
[/SIZE]

[SIZE=18pt]ХИМИЧЕСКИЙ СОСТАВ ГРИБОВ[/SIZE]
[SIZE=10pt]Если подвергнуть плодовое тело либо грибницу любого гриба полному сгоранию, то неизбежно получается твердый остаток — зола и некоторое количество газообразных веществ: углерода, кислорода, водорода и азота. Газообразные вещества представляют собой продукты окисления (разложения) органических соединений. В грибных тканях, таким образом, имеются неорганические минеральные составы и органические, которые состоят из четырех вышеназванных элементов в различных комбинациях.
Отличительной чертой грибов является значительное содержание в них воды. Количество воды достигает до 90% общего веса грибной ткани. Это объясняет ту картину, когда при высушивании плодовых тел они значительно теряют прежнюю форму, съеживаются, уменьшаются в размерах. Что представляет собой сухой остаток, видно из следующей таблицы.
[/SIZE]

[SIZE=10pt]Химический состав сухого остатка (в % от общего сухого веса)[/SIZE]

[SIZE=10pt]Белок 20–24[/SIZE]
[SIZE=10pt]Липиды (сырой жир) 18–20
Глюкоза, маннит 17–30[/SIZE]
Целлюлоза 20–27
Лигнин 2–36
Хитин, фунгин 3

[SIZE=10pt]Белки[/SIZE]

[SIZE=10pt]Белковые вещества придают особую ценность грибам как пищевому продукту. Однако важным недостатком следует признать то обстоятельство, что у грибов имеется также много клетчатки (лигнин и целлюлоза) и хитина (вещества, встречающегося в клеточной оболочке различных насекомых, пауков, ракообразных и придающему их покровам большую устойчивость), вследствие чего людям с пониженной функцией пищеварительной системы следует соблюдать меру при их употреблении. Если в среднем можно признать, что у шляпочных грибов имеется около 25–30% белков от сухого вещества, то из этого количества только 15–17[/SIZE]% усваивается в желудке человека. Однако разнообразный состав белков и, главное, продукты их расщепления (незаменимые аминокислоты — лизин, лейцин, триптофан) вполне компенсируют этот недостаток и при умеренном усвоении их организмом.
Следует учесть, что у старых перезрелых съедобных грибов происходит накопление в ткани продуктов распада белков и особенно опасного среди них вещества — холина. Холин является продуктом разложения жиров и белков, обладает щелочной реакцией и легко соединяется с кислотами, образуя соли. Холин чрезвычайно ядовит и вызывает при употреблении внутрь такие характерные признаки отравления, как понос, понижение сердечной деятельности, увеличение кровяного давления, одышку и расстройство функций нервной системы. Он образуется у всех грибов в большем или меньшем количестве. Количество
его всегда растет по мере старения плодового тела гриба. У белого гриба холин найден в молодом возрасте в пределах 0,1–0,2% от сухого веса, у лисичек — 0,007%, у шампиньона — 0,007–0,009%, у мухомора — 0,4% от сухого веса. Холин всегда представляется спутником разлагающейся ткани, поэтому загнивающие и испорченные грибы довольно опасны для использования в качестве пищевых продуктов. От таких экземпляров следует тотчас избавляться и тем более не употреблять их в пищу.

[SIZE=10pt]Углеводы[/SIZE]

[SIZE=10pt]Содержащиеся в тканях грибов углеводы (маннит и глюкоза) способствуют появлению такого очень распространенного признака, как ослизнение верхней поверхности шляпки плодового тела во влажную погоду.
Интересно, что у молодых грибов присутствует в мякоти концентрированный углевод — полисахарид, или так называемый грибной сахар — микоза, а в старых грибах он уже не встречается, разлагаясь полностью на простые сахара — глюкозу и маннит. Такое явление связано с тем, что со временем активизируется работа внутренних ферментов, которые делят сложные вещества на составные части. Если живые клетки убить, например, ошпарив кипятком плодовое тело, то грибной сахар сохраняется в своем неизменном, первоначальном виде. Со старением же гриба или при его высушивании происходит полное окисление этого вещества.
Наибольшее количество углеводов содержится в ножке плодового тела гриба, тогда как в шляпке их уже намного меньше, хотя они и используются созревающими спорами. Личинки насекомых, часто поражающие грибы, располагаются чаще всего в ножке, реже в шляпке и почти никогда не встречаются в спороносящем слое (на нижней поверхности шляпки), не представляющим для них ввиду отсутствия сахара достаточно подходящий субстрат.
[/SIZE]

[SIZE=10pt]Алкалоиды[/SIZE]

[SIZE=10pt]У грибов нередко наблюдаются такие же, как и распространенные у высших растений, вещества — алкалоиды. Алкалоиды — это азотсодержащие соединения в виде солей, которые занимают значительное место в системе управления обменом веществ организма. Свое название они получили от арабского слова «алкали» — щелочь и греческого «ейдос» — подобный. Первый открытый в семенах мака алкалоид был назван морфием в честь греческого бога сна Морфея. Затем из различных растений были выделены такие активные алкалоиды, как стрихнин, кофеин, никотин, хиниатропин, которые довольно широко известны в качестве лечебных препаратов.
Типичным грибным алкалоидом является мускарин. Мускарин есть не что иное, как продукт окисления холина, который сам собой представляет ядовитое вещество. Естественно, что мускарин имеется у многих шляпочных грибов, но в достаточно ничтожных дозах, чтобы представлять такую опасность, как отравление. Рекордсменами по содержанию мускарина признаны в основном 3 вида грибов: мухомор, свинушка толстая и тонкая, сатанинский гриб. В их тканях его присутствие зафиксировано в пределах 0,016% от свежего веса плодового тела, однако количество алкалоида может изменяться в ту или иную сторону в зависимости от условий произрастания и развития грибов. Для отравления со смертельным исходом человеку необходимо съесть, по крайней мере, 4 кг свежих мухоморов за один прием, что едва ли возможно. Но сам мускарин способен усиливать свое действие, призывая в союзники так называемые опьяняющие токсины. Вследствие этого даже при небольших дозах совместное действие этих веществ вызывает довольно тяжелую интоксикацию. За мухомором издавна установилась прочная репутация морителя мух, отчего, собственно, он и заслужил свое название. Обычно шляпку гриба замачивали в течение нескольких часов в воде и посыпали затем сахаром.
Влекомые запахом «угощения» мухи садились на поверхность шляпки, пили выступающий экстракт и благополучно заканчивали свой жизненный путь.
Физиологическое действие мускарина на организм человека проявляется в замедлении пульса, обильном пото-, слюно- и слезотечении, расстройстве функций нервной системы. Сильным противоядием мускарину выступает алкалоид атропин, который моментально приостанавливает его токсическое влияние. Интересно, что, например, у рыжика имеются оба этих алкалоида и в связи с характерной нейтрализацией токсина атропином употребление гриба в пищу не вызывает каких-либо побочных эффектов.
[/SIZE]

[SIZE=10pt]Секрет грибного аромата[/SIZE]

[SIZE=10pt]У грибов встречаются в больших количествах разнообразные органические кислоты (муравьиная, уксусная), благодаря чему грибной сок из мякоти свежего плодового тела имеет довольно кислый вкус. Ароматические кислоты обуславливают своим присутствием неповторимый грибной аромат. Установлено, что в значительной степени его основу составляют глютаминовая кислота и эфирные выделения, образующиеся в процессе обмена веществ грибного организма. Надо отметить, что вообще запахи у грибов бывают весьма разнообразные и не всегда точно удается их определить. Например, вид некоторых плесневых грибов имеет запах капусты, а не имеющие запаха плодовые тела некоторых шляпочных грибов при перезревании издают очень сильный и большей частью противный, отталкивающий запах. В этом отношении особенно характерны подземные грибы — трюфели.[/SIZE]

[SIZE=10pt]Грибы-диагносты[/SIZE]

[SIZE=10pt]Среди запахов грибов особое внимание привлекают специфический чесночный запах, издаваемый белым трюфелем, грибами-чесночниками. Запах настолько силен, что эти грибы вполне могут служить приправой к еде вместо чеснока. По этому поводу следует заметить, что некоторые грибы (пенициллы) издают чесночный запах при их искусственном разведении на субстратах, содержащих, помимо главных элементов питания (сахара, белков и минеральных солей), небольшое количество мышьяка. Как известно, химический анализ веществ, содержащих мышьяк, часто используется в судебной медицине, для выявления случаев отравления. Определенная реакция позволяет выявить, содержится ли мышьяк в этих веществах или нет. При наличии мышьяка явственно выделяется чесночный запах. В данном случае, химическую экспертизу можно с успехом заменить биологической. Для этой цели особенно подходящим объектом является гриб пенициллиум бревикауле, который обладает способностью выявлять минимальное количество мышьяка в субстрате до 0,0001 миллиграмма. Сначала гриб разводят на хлебе, который представляет собой субстрат-инкубатор. Затем освоенный грибом хлебный мякиш помещают в пробирку, куда вкладывают и кусочек предмета, содержащего по предположению мышьяк. Если в кусочке действительно имеется мышьяк, то гриб даст знать об этом запахом чеснока, который может проявиться уже через несколько часов после постановки опыта. Исследованиями подтверждено, что действительно при наличии мышьяка в субстрате плесень образует специальное органическое вещество диэтиларсин, которое и обладает специфическим чесночным ароматом. Гриб пенициллиум бревикауле, очевидно, пришелся бы со своей уникальной способностью к месту в средневековой Франции, где, как мы знаем, дворцовые интриги нередко заканчивались умышленным избавлением от царствующих особ и престолонаследников. При этом в ход шли яства, сдобренные излюбленным преступниками ядом — мышьяком. Мышьяк вершил свое действие не сразу, а постепенно, накапливаясь в организме до определенной концентрации, и конец чаще всего представлялся результатом какого-либо внезапно развившегося заболевания, не имеющего отношения к яду. Такое свойство мышьяка позволяло чинить безнаказанно смену неудобных монархов и не опасаться при этом извлечения на себя подозрения со стороны бдительного ока ответственного за безопасность персонала. Возможность разоблачения, может быть, в какой-то мере снизила бы активность злодеев, заставив их призадуматься об ответственности.[/SIZE]

[SIZE=10pt]Минеральные вещества в грибах[/SIZE]

[SIZE=10pt]Помимо белков, углеводов и прочих веществ, грибы содержат определенное количество минеральных элементов, входящих в твердый остаток сухого веса — золу. Зола составляет минимальное количество сухого веса, приблизительно 6–10%. Соотношение минеральных веществ в золе таково:[/SIZE]

[SIZE=10pt]Калий 45%[/SIZE]
[SIZE=10pt]Фосфор 40%
Магнии 2%
Натрий 1,5%
Кальций 1,3%
Железо 1%
Кремний 1%
Сера 8%
Хлор 1%
[/SIZE]

[SIZE=10pt]Как видим, преобладающее значение выпадает на долю калия и фосфора, которые в общей сумме составляют 85% и более всего веса золы.
Калий — жизненно необходимый элемент, участвующий в углеводном обмене. Он часто образует так называемые калийные соли. Малое количество калия может приостановить процесс размножения у грибов.
Фосфор играет не меньшую роль в жизни гриба, чем калий, и активно участвует в биосинтетических и обменных процессах. Фосфор представляется в виде фосфорной кислоты. Значительное его количество в тканях грибов позволяет приравнять их к такому ценному продукту, как рыба.
Следующий элемент — сера, хотя и встречается в гораздо меньших количествах, чем кремний и фосфор, однако по существу является первостепенным по своему значению веществом, принимающим участие в синтезе белка.
Кальций содержится в грибах очень часто в соединениях с щавелевой кислотой, образуя щавелевокислую известь, которая выделяется обычно в форме кристаллов на поверхности грибных гиф и плодовых тел. Кальций способствует росту и накоплению массы грибной ткани.
Еще один элемент — магний активизирует работу ферментов, его недостаток приводит к падению активности разложения субстрата грибами.
Остальные минеральные вещества, найденные у грибов, хотя и необходимы для нормальной их жизнедеятельности, имеют все же второстепенное значение.
[/SIZE]

[SIZE=18pt]ФЕРМЕНТЫ ГРИБОВ[/SIZE]
[SIZE=10pt]Жизнедеятельность любого организма выражается обменом веществ. Этот процесс неосуществим без участия ферментов. С одной стороны, их функции заключаются в расщеплении сложных органических веществ и превращении их из нерастворимых соединений в растворимые составы, готовые для усвоения клеткой. С другой стороны, ферменты создают запасные вещества из более простых элементов. В этих постоянных превращениях заключается вся жизнь клетки любого организма, поэтому ферменты, можно сказать, составляют неотъемлемую часть каждого живого существа.
По характеру своей деятельности ферменты близки к катализаторам неорганического мира, вызывающим так называемые каталитические реакции. Под каталитическими реакциями подразумевают такие химические превращения, которые вызываются, или, вернее, ускоряются присутствием посторонних веществ, сами по себе при этом никаким изменениям не подвергающихся. При этом для успешного результата достаточно их минимального количества. Примером данной реакции может служить следующий опыт: чистый цинк помещается в серную кислоту, вследствие чего образуется слабое и медленное выделение водорода. Но если к этой смеси добавить каплю раствора хлорной платины, то немедленно начнется бурное и обильное выделение водорода. Ничтожное количество хлорной платины, не вступающее в соединение с элементами смеси и само по себе не изменяющееся, выступает здесь в качестве некоего стимула, или, как принято говорить в химии, катализатора. Абсолютно аналогичное явление наблюдается в органических соединениях под влиянием ферментов.
Как показывают опыты, разложение органических веществ и превращение их происходит в природе нередко и без участия ферментов, но крайне медленно и слабо. Присутствие же соответствующих ферментов намного ускоряет и усиливает этот процесс.
Многие ферменты обладают способностью беспрепятственно проходить сквозь оболочку живых клеток. Наличие у ферментов или отсутствие этого свойства дает возможность разбить их на две группы: ферменты наружной работы, проявляющие свою деятельность в расщеплении или в превращении веществ, находящихся вне клеток их образующих, и ферменты внутренней работы, деятельность которых ограничена содержимым той клетки, в которой они имеются. Таким образом, между ферментами наблюдается разделение труда: внешние ферменты накапливают из окружающей среды необходимые для роста и развития гриба материалы, внутренние же перерабатывают эти материалы, выделяя из них все ценное и отбрасывая все ненужное.
Интересной особенностью ферментов считается их узкая специализация, благодаря которой они действуют нацеленно только на какое-либо одно, определенное вещество. В случаях, когда предстоит «раскусить» очень сложное по строению вещество, всегда набирается несколько ферментов, действующих совместно или в определенной последовательности друг за другом. Таким образом, если иметь в виду, что функции ферментов, в конечном итоге, направлены к превращению нерастворимых органических соединений в растворимое вещество, главным образом в сахар, то в их деятельности наблюдается преемственность, вследствие чего нерастворимое образование поэтапно расщепляется на отдельные части, из которых затем вырабатывается растворимая глюкоза. Отсюда и присутствие в живых клетках грибных гиф разнообразных, иногда многочисленных ферментов. Например, у гриба пенициллума камембери, используемого при заготовке сыров «камамбер» найдено 11 видов ферментов, у лесного опенка — 15.
Количество ферментов в грибах подчиняется общему правилу. Чем более специально приспособлен к определенному субстрату вид (например, мухомор, растущий на почве хвойных и смешанных лесов), тем меньшим количеством ферментов он обладает (у мухомора их не более четырех). Многие низшие грибы, поражающие большое количество субстратов, и высшие, дереворазрушающие (трутовики, вешенка), которым приходится находить провиант в сложных соединениях древесины, обладают достаточно большим ассортиментом ферментов. Этим объясняется тот факт, что выделенные из естественной среды произрастания грибы хорошо развиваются в искусственных условиях в научных лабораториях. Здесь они растут в так называемой чистой культуре.
[/SIZE]

[SIZE=10pt]Чистая культура грибов[/SIZE]

[SIZE=10pt]Для жизни грибного организма необходимы углерод, азот и минеральные элементы, которые он добывает усердной работой из массы субстрата. В результате получаются растворимые и усвояемые вещества — сахар, аминокислоты и минеральные соли. Особенность чистой культуры состоит в том, что эти вещества даются грибу в чистом виде (питательного раствора), чем устраняется надобность в дополнительных усилиях по их извлечению. Вся энергия грибной клетки направляется к дальнейшей переработке этих веществ. Получается, таким образом, экономия времени и сил, что отзывается на быстроте и пышности роста грибницы.
Состав искусственных питательных сред включает питательные элементы, воду и вещество, позволяющее зацементировать среду в единое целое, придав ей твердый вид — агар. Агар — это своего рода растительный клей, близкий по составу к клетчатке, и добывается он из красных водорослей агар-агар. В пищевой промышленности агар используется в приготовлении кондитерских изделий. Например, кубики мармелада застывают при участии агара, а желеобразные начинки конфет приобретают свою консистенцию также благодаря нему. Агар значительно разбухает в воде.
Грибную культуру разводят в специальной посуде — чашках Петри, различных емкостях и т.п. Спорами или кусочком грибницы засевают поверхность питательного агара. Грибы прекрасный объект для исследований обмена веществ в организме. Чистая культура грибов позволяет максимально упрощенно получить ответы на многие вопросы: о роли того или иного питательного элемента в жизни клеток, скорости операций превращения различных веществ, зависимости развития от тех или иных условий и т.п.
Иногда грибы образуют маленькие плодоношения в условиях чистой культуры, демонстрируя тем самым свою 100-процентную принадлежность к тому или иному виду. Это особенно является важным обстоятельством, поскольку большинство грибов имеет одинаковое строение своих вегетативных органов и не всегда можно их отличить друг от друга, даже используя специальную микроскопическую технику. Если культура долго не развивает плодовые тела, то, пересеивая ее раз от раза в течение продолжительного времени на новые питательные среды, нельзя гарантировать точно, какого именно она племени. Возможно, что доставленное из леса существо уже давно принесло себя в жертву однотипному собрату и ухаживание ведется теперь за совершенно чуждым организмом. Такая неприятность уже случалась в исследовательской работе еще на заре приручения дикого шампиньона. Много сил и стараний было потрачено на то, чтобы прижилась предположительно его грибница в чистой культуре. Поддерживая ее жизнедеятельность, питательные среды подавались одна за другой, менялся их состав в расчете на составление самого изысканного рецепта, менялись разнообразные комбинации значений условий окружающей среды в надежде найти самую благоприятную. Однако все было тщетно. Цикл развития гриба никак не хотел приближаться к естественному концу — размножению. Ошибка вскрылась через продолжительное время и оказалось, что местом шампиньона довольно беззастенчиво пользуется некий несовершенный гриб. Выявить нахлебника помогло то, что он, будучи не в силах стерпеть восторга от радушия и гостеприимства, решился дать жизнь новому поколению. По характерным для низших грибов плодовым образованиям и была установлена его принадлежность. Но затем все равно упорство энтузиастов было вознаграждено, и первые плодовые тела шампиньона в чистой культуре были получены. Метод, используемый для этого, был довольно интересным. Он получил название «чашечных половинок». Чашки Петри (стеклянные блюдца с высокими бортами) заполнялись компостированным конским навозом в сочетании с дерновой почвой. Затем их стерилизовали и засевали грибницей, выращенной на зерне. На 10–14
 суток чашки оставляли в специальной влажной камере, с соответствующей температурой. Для плодоношения шампиньону необходим слой почвы, в котором будут завязываться плодовые тела и из которого они затем будут получать необходимую для развития влагу. Этот слой обычно насыпается сверху субстрата, в котором развивается грибница. В методе «чашечных половинок» ввиду невозможности расположения над поверхностью субстрата этого слоя (чашка с субстратом уже и до этого засыпана до краев) было решено почву уложить рядом с этим субстратом. Пустая чашка Петри заполнялась полностью увлажненной смесью дерновой земли, низинного торфа и мела и ставилась непосредственно сбоку, касаясь чашки с освоенной шампиньоном средой. Дальнейшее выращивание гриба происходило под стеклянным колпаком, куда были помещены обе чашки. Гифы грибницы, разыскивая подходящие условия для плодообразования, переползали в чашку с землей, сплетали внутри нее сети и затем, спустя некоторое время образовывали там плодовые тела маленьких шампиньончиков.[/SIZE]

[SIZE=10pt]Грибная жизнь ради ценного сырья[/SIZE]

[SIZE=10pt]Грибы в чистой культуре можно выращивать не только на твердой среде, но и на жидкой. Способ выращивания на жидкой среде практически не отличается от предыдущего способа — и там, и там, питание происходит за счет раствора питательных элементов. Однако на твердой поверхности гриб не рискует утонуть и каждой гифой он чувствует определенную опору из частиц субстрата. На жидком субстрате приходится побороться за свою жизнь, и единственным выходом кажется одно — превратиться в нечто плавучее. Что, собственно, гриб и делает. Его гифы тесно, одна к другой сплетаются в одной плоскости в единое целое, образуя поверхностную пленку. Такое образование наподобие плота довольно успешно противостоит природе воды, и даже способно выдержать ее небольшое возмущение.
Если в твердом субстрате гриб отправляется на охоту за пищей на всю его глубину, методично обследуя слой за слоем, то в жидкой среде это происходит несколько иным образом. Здесь «молочная река» непосредственно омывает грибные органы и надо только постараться при помощи небольших порций ферментов приготовить из нее традиционный коктейль.
Помимо поверхностной пленки жизнь гриба в водной среде может принимать и иные черты. Это происходит в том случае, когда жидкость приходит в результате какого-либо явления в движение, ее слои перемешиваются друг с другом и соблюдаются тем самым признаки ее поведения при шторме. Естественно, что пленка гриба через некоторое время при таких условиях уйдет на дно, будучи спроектированной, в расчете на стационарное, спокойное состояние среды. И тут грибы выручает их способность к выживанию. Она проявляется в налаживании жизни и в толще жидкой среды, на глубине при помощи отдельных элементов грибной ткани. Это могут быть образования различной формы — нити, шарики, обрывки переплетенных, ветвящихся тяжей. И здесь только необходимым является продолжение буйства водной стихии. Поскольку тогда внутри нее будет необходимый кислород. Вполне сносное существование и развитие грибов в такой казалось бы недружественной обстановке позволило выращивать их еще одним приемом чистой культуры — так называемым погруженным выращиванием. Этот прием оказался настолько хорош и эффективен, что им стали пользоваться для получения необходимых результатов в промышленных масштабах. Грибы в процессе своей жизнедеятельности выделяют в окружающую среду различные продукты: антибиотики, кислоты, витамины, ферменты и т.п. Эти продукты представляют собой побочные выделения обмена веществ. Они получили широкую известность и признание, став незаменимым сырьем в производстве очень ценных лекарственных препаратов и изделий легкой и пищевой индустрии. Погруженное выращивание позволяет использовать значительный объем питательных сред. Жидкость наливают в специальные чаны — ферментеры, емкостью от 10 литров до нескольких сотен литров. Естественно, что в этом случае выход нужных веществ (продуцируемых грибными клетками) увеличивается с единицы площади до максимальных пределов. Чтобы грибы не задохнулись в питательной жидкости, ферментеры при помощи специальных механизмов подвергают непрерывной встряске. После окончания «жидкого» периода развития гриба питательная среда напоминает собой густой суп, насыщенный «обломками» грибницы. Ее отфильтровывают до получения прозрачной жидкости. В дальнейшем используют и жидкость, и грибной осадок. Их качество и способности проходят ряд испытаний так называемыми тест-пробами. Например, при определении антибиотической активности грибной жидкости поступают следующим образом. В чашке Петри выращивают колонии бактерий или посторонних (других видов) грибов. На поверхность питательной среды, в каком-нибудь месте, накладывают полоски фильтровальной бумаги, смоченной в испытуемом растворе. При наличии в растворе антибиотика, вокруг полосок бумаги образуется зона задержки роста тест-микробов. Распространение их колонии минует «заминированный участок» стороной, довольствуясь свободной от сюрпризов территорией.
Кроме антибиотиков широкого спектра действия из грибной жидкости и экстрактов грибницы получают антибиотики с более специфическим направлением, запрограммированных на уничтожение опухолей и вирусов. Определяют свойства антибиотиков также путем опытов. Для отбора противовирусных препаратов применяют искусственное заражение животных (например, вирусом гриппа) и растений (вирусом табачной мозаики). Потом животным впрыскивают раствор антибиотика, а зараженную растительную ткань (листья) погружают в него. По скорости и степени выздоровления зараженных организмов судят об эффективности данного антибиотика. При отборе противоопухолевых антибиотиков используют в качестве тест-объекта раковые клетки (из зараженных тканей). Их смешивают с испытуемым антибиотиком, получая смесь жидкого состава. Затем полученную смесь вводят подкожно мышам. Через 10 дней обычно мышей убивают и определяют наличие опухолей. Если антибиотик достаточно активен, то, как правило, он уничтожает раковые клетки, не давая им вызвать образование опухолей.
По определении достоинств грибной жидкости и грибницы из них производят получение искомых продуктов в концентрированном виде. Жидкость выпаривают до твердого осадка, а грибную ткань подвергают экстракции каким-либо растворителем (спиртом, кислотой). Затем экстракт также упаривают. Искомые вещества представляются в виде порошка или кристаллов. Более подробную информацию о применении этих веществ можно найти в разделе книги «Применение грибов и продуктов их жизнедеятельности в хозяйственной практике и в медицине».
[/SIZE]

[SIZE=10pt]Ферменты в работе[/SIZE]

[SIZE=10pt]Теперь вернемся к ферментам грибов и остановимся подробно на их деятельности. По характеру своей деятельности ферменты делятся на несколько групп. Первая группа включает в себя ферменты так называемого гидролитического действия. Оно проявляется в следующем. «Команда» из нескольких ферментов расщепляет какое-либо вещество, одновременно присоединяя к его молекулам воду. Конечный результат такой работы — разжижение этого вещества. Характерным примером может служить картина развития какого-либо гриба на поверхности желатина. Верхний слой желатина расплывается лужицей от растворения его твердых составляющих материалов-белков. Таким следом отмечаются обычно ферменты-протеазы. Другие ферменты этой группы, выделенные в команду так называемых пектиназ, оставляют не менее содержательные знаки своего присутствия на том или ином субстрате. Название пектиназа дано этим ферментам не случайно, и произошло оно от их способности утилизировать такое вещество, как пектин. Пектином свойственно именовать межклеточное вещество растительных тканей, склеивающее смежные клетки. Более-менее значительные полости между клетками и скоплениями из них заполнены до предела пектином. Если грибу, имеющему в своем арсенале пектиназы, предложить в качестве субстрата материал с обильным содержанием пектина — например, ломти турнепса или моркови, — то по прошествии некоторого времени обнаруживается довольно любопытное зрелище. Пектиназы буквально выгрызают межклеточное вещество из растительной ткани, вследствие чего она распадается на отдельные мелкие части.
Жиры также подвергаются влиянию грибов. При этом «необходимые полномочия» делегируются ферментам — липазам. Их контакт с жирами заканчивается «полной потерей лица» последних, вынужденных «согласиться» на превращение в жидкую эмульсию. Из числа гидролизирующих ферментов грибов особый интерес представляют уреазы. Они ориентированы на разложение мочевины. Мочевина накапливается в грибных тканях как отброс. Причем это происходит только в случае усиленного питания грибницей азотистыми веществами на фоне углеводного голодания. Как
только в питательной среде появляется достаточное количество углеводов, грибница начинает поглощать их в избытке, игнорируя при этом азотсодержащие элементы питания. Необходимый для обмена веществ азот при помощи уреаз извлекается из мочевины и тут же поглощается.
Другая группа грибных ферментов — оксидазы. Она способствует окислению (разложению) накопленных грибницей запасных веществ. В результате этого вырабатывается необходимая энергия для проявления жизнедеятельности грибных клеток. Деятельность этих ферментов напоминает печку, сжигающую топливо. Образующееся при этом тепло разогревает окоченевшие члены, придавая им тем самым возможность двигаться. Типичные представители ферментов-оксидаз — лакказа и пероксидаза. В растительном мире лакказа встречается, например, в соке лакового дерева. Благодаря ей этот сок быстро твердеет и темнеет, образуя такой известный материал, как японский лак.
Еще одна группа ферментов — зимазы — принимает активное участие в процессе дыхания грибов. Поэтому чаще их называют дыхательными ферментами. Эти ферменты при наличии кислорода превращают накопленный в грибнице сахар в углекислоту и воду.
Перечисленные три группы ферментов считаются основными помощниками грибного организма. Каждая из них несет свое определенное предназначение. В совокупности исполнения функций этими группами гриб получает возможность не только не умереть с голоду, но и часто разнообразить собственное меню различными деликатесами, а также подумывать об улучшении жилищных условий под крышей любого приглянувшегося субстрата.
[/SIZE]

[SIZE=18pt]ПИТАТЕЛЬНЫЕ СВОЙСТВА ГРИБОВ[/SIZE]
[SIZE=10pt]К положительным свойствам грибов как пищевого продукта следует отнести их богатое содержание белковыми веществами, сахарами, отчасти жирами и фосфором. Выше уже были даны сведения о химическом составе грибов. В таблице приведенной ниже, даны результаты анализов съедобных шляпочных грибов, произведенных рядом исследователей.[/SIZE]

[SIZE=10pt]Виды грибов[/SIZE]

[SIZE=10pt]Протеин[/SIZE]

[SIZE=10pt]Жиры[/SIZE]

[SIZE=10pt]Маннит[/SIZE]

[SIZE=10pt]Глюкоза[/SIZE]

[SIZE=10pt]Экстракт.в-ва[/SIZE]

[SIZE=10pt]Клетчатка[/SIZE]

[SIZE=10pt]Зола[/SIZE]

[SIZE=10pt]Гриб-зонтик[/SIZE]

[SIZE=10pt]30,0[/SIZE]

[SIZE=10pt]5,1[/SIZE]

[SIZE=10pt]10[/SIZE]

[SIZE=10pt]4,3[/SIZE]

[SIZE=10pt]35,8[/SIZE]

[SIZE=10pt]9,3[/SIZE]

[SIZE=10pt]4,3[/SIZE]

[SIZE=10pt]Опенок зимний[/SIZE]

[SIZE=10pt]16,7[/SIZE]

[SIZE=10pt]5,2[/SIZE]

[SIZE=10pt]19,3[/SIZE]

[SIZE=10pt]3,9[/SIZE]

[SIZE=10pt]4,5[/SIZE]

[SIZE=10pt]41,5[/SIZE]

[SIZE=10pt]8,8[/SIZE]

[SIZE=10pt]Коллибия (денежка)[/SIZE]

[SIZE=10pt]35,5[/SIZE]

[SIZE=10pt]2,4[/SIZE]

[SIZE=10pt]9,6[/SIZE]

[SIZE=10pt]4,3[/SIZE]

[SIZE=10pt]25,2[/SIZE]

[SIZE=10pt]12,3[/SIZE]

[SIZE=10pt]10,5[/SIZE]

[SIZE=10pt]Вешенка[/SIZE]

[SIZE=10pt]16,2[/SIZE]

[SIZE=10pt]3,2[/SIZE]

[SIZE=10pt]21,3[/SIZE]

[SIZE=10pt]4,8[/SIZE]

[SIZE=10pt]24,6[/SIZE]

[SIZE=10pt]7,2[/SIZE]

[SIZE=10pt]12,5[/SIZE]

[SIZE=10pt]Навозник[/SIZE]

[SIZE=10pt]35,5[/SIZE]

[SIZE=10pt]1,5[/SIZE]

[SIZE=10pt]10,3[/SIZE]

[SIZE=10pt]20,6[/SIZE]

[SIZE=10pt]20,1[/SIZE]

[SIZE=10pt]3,3[/SIZE]

[SIZE=10pt]8,6[/SIZE]

[SIZE=10pt]Лисичка[/SIZE]

[SIZE=10pt]32,2[/SIZE]

[SIZE=10pt]1,8[/SIZE]

[SIZE=10pt]10,1[/SIZE]

[SIZE=10pt]-[/SIZE]

[SIZE=10pt]31,2[/SIZE]

[SIZE=10pt]13,1[/SIZE]

[SIZE=10pt]11,3[/SIZE]

[SIZE=10pt]Белый гриб[/SIZE]

[SIZE=10pt]41,1[/SIZE]

[SIZE=10pt]1,9[/SIZE]

[SIZE=10pt]16,2[/SIZE]

[SIZE=10pt]5,2[/SIZE]

[SIZE=10pt]18,7[/SIZE]

[SIZE=10pt]6,7[/SIZE]

[SIZE=10pt]9,3[/SIZE]

[SIZE=10pt]Гиднум Трюфель[/SIZE]

[SIZE=10pt]24,4[/SIZE]

[SIZE=10pt]4,6[/SIZE]

[SIZE=10pt]8,07[/SIZE]

[SIZE=10pt]6,1[/SIZE]

[SIZE=10pt]32,6[/SIZE]

[SIZE=10pt]14,0[/SIZE]

[SIZE=10pt]9,9[/SIZE]

[SIZE=10pt]Трюфель белый[/SIZE]

[SIZE=10pt]39,7[/SIZE]

[SIZE=10pt]2,1[/SIZE]

[SIZE=10pt]4,6[/SIZE]

[SIZE=10pt]5,4[/SIZE]

[SIZE=10pt]10[/SIZE]

[SIZE=10pt]29,5[/SIZE]

[SIZE=10pt]8,4[/SIZE]

[SIZE=10pt]Рыжик[/SIZE]

[SIZE=10pt]30,2[/SIZE]

[SIZE=10pt]8,02[/SIZE]

[SIZE=10pt]10,6[/SIZE]

[SIZE=10pt]3,8[/SIZE]

[SIZE=10pt]9,2[/SIZE]

[SIZE=10pt]32,1[/SIZE]

[SIZE=10pt]5,9[/SIZE]

[SIZE=10pt]Для сравнения рассмотрим содержание белков в следующих продуктах (в % на 100 г сухого в-ва).[/SIZE]

[SIZE=10pt]Мясо 30,6[/SIZE]
[SIZE=10pt]Пшеничная мука 8,03
Ячневая мука 6,39
Овсяная мука 9,7
Горох 27,0
Картофель 4,8
[/SIZE]

[SIZE=10pt]В грибах содержится большое количество воды, и в этом отношении сушеные плодовые тела имеют преимущества как более концентрированный продукт.[/SIZE]

[SIZE=10pt]Виды грибов Содерж. воды в %
Гриб-зонтик 91,25
Опенок зимний 92,7
Коллибия (денежка) 91,7
Вешенка 89,0
Навозник 94,3
Лисичка 91,9
Белый гриб 91,3
Гиднум 92,6
Трюфель белый 78,5
Рыжик 88,7
[/SIZE]

[SIZE=10pt]Как было упомянуто раньше, не все белковые вещества одинаково перевариваются организмом человека. Так называемый протеин утилизируется желудочным соком только на 60–70%, в зависимости от того, в каком виде используется гриб: засушенным, свежим или же размельченным в порошок. Порошок переваривается лучше, потому что в данном случае освобождается больше белка из разрушенных клеток. При отваривании свежего или засушенного плодового тела стенки клеток, состоящие из хитина и фунгина, сохраняются. Полезное внутреннее содержимое клеток используется недостаточно, поскольку оно предохранено стенками словно панцирем, стойко выносящим действие желудочного сока. Количество белков, обнаруженных в грибах, подвержено колебанию даже в пределах одного и того же вида. Отчасти это объясняется тем, что химический состав грибов зависит в той или иной степени от питательных свойств субстрата, на котором они развиваются, места произрастания и определенных экологических условий.
Помимо белков весьма ценным обстоятельством является присутствие в грибах углеводов. Заменяющий крахмал (у высших растений) гликоген имеет большое питательное значение. Так, содержащие его в большом количестве дрожжи представляют собой незаменимый продовольственный и лечебный продукт.
У грибов довольно высок процент содержания экстрактивных веществ, которыми, в основном, и обусловлен их приятный вкус. В этом отношении грибы превосходят многие овощи и плоды и могут быть сравнимы разве только с шоколадом, имеющим их в количестве 25–27[/SIZE]%.
Содержание золы в грибах определяется в 1–2% свежего или в 4–10% сухого веса. Зола в особенности богата калийными соединениями (до 45%) и фосфором (до 39%). По наличию фосфора грибы обгоняют такой продукт, как коровье молоко (28%). В отношении калия грибы можно приравнять к грушам (50%) и к винограду (56%). Грибы отличаются большим содержанием клетчатки, которое в некоторых случаях доходит до 42% от сухого веса. Опять же распределение ее в плодовом теле неоднородно, и, например, ножка имеет ее в большем количестве, чем шляпка. Поэтому шляпка пользуется неоспоримым преимуществом при употреблении в пищу. В отношении шляпок всегда необходимо придерживаться правила: удалять перед использованием пленку с верхней поверхности, так как именно в ней часто содержатся вредные или ядовитые вещества. Что касается нижнего спороносящего слоя шляпки, то по его цвету как по индикатору можно определить степень пригодности всего плодового тела в пищу. Дело в том, что у молодых съедобных грибов при созревании спор эта поверхность имеет более светлую окраску, чем у зрелых и старых. Такой признак сопутствует достаточно свежему состоянию гриба и в этом случае его можно употреблять без предосторожностей. По мере созревания плодового тела белки и жиры, содержащиеся в нем, подвергаются распаду и в ткани растет концентрация продуктов этой реакции. Возраст гриба выдает окраска нижней стороны его шляпки. Например, у перезрелого шампиньона она становится фиолетово-черной, у боровика — зеленоватой и т.п. В старину для определения ядовитости того или иного гриба широко применялся следующий способ. В кастрюлю, где варились грибы, рекомендовалось опускать предмет из серебра или луковицу. При этом если гриб, якобы, ядовит, то серебро чернеет, а луковица синеет или коричневеет. Однако такое изменение окраски может случиться с любым грибом, независимо от того ядовит, он или нет, поскольку обусловливается оно присутствием в грибных тканях соединений серы. Иногда также можно услышать совет употреблять в пищу только те грибы, которые служат, в свою очередь, пищей насекомым, слизням и другим низшим животным. На этот счет следует отметить, что различные грибы — как ядовитые, так и съедобные — часто поедаются этими существами, но ядовитые вещества, вредные для человека, на них особого влияния не оказывают.

[SIZE=10pt]==ҐҐ<div class="center">ПРИМЕНЕНИЕ ГРИБОВ И ПРОДУКТОВ ИХ ЖИЗНЕДЕЯТЕЛЬНОСТИ В ХОЗЯЙСТВЕННОЙ ПРАКТИКЕ<br /> И МЕДИЦИНЕ</div>ҐҐ==[/SIZE]

[SIZE=10pt]Дрожжи[/SIZE]

[SIZE=10pt]Грибы, названные данным словом, заслужили его благодаря своему свойству заставлять «дрожать» жидкость, в которой им довелось найти кров и еду. Дрожжам для развития не нужен кислород, они спокойно обходятся без него. При их дыхании образуется углекислый газ, который в виде пузырьков выходит на поверхность воды. Их жизнь осуществляется за счет брожения — процесса, позволяющего им выжить в безвоздушном пространстве. При брожении сахар как главный энергетический материал подвергается распаду. Продуктом этой реакции становится спирт. В связи с этой интересной способностью грибы заслужили большую популярность, превратившись в незаменимых производителей горячительных напитков, хлебобулочных изделий. Ежегодно в мире изготавливается одних только пекарских дрожжей не менее 700 000 тонн, а сухих кормовых дрожжей — около 200 000 тонн. Вина с помощью дрожжей получают из виноградных и плодово-ягодных соков. Пиво получают из зерен злаков. Чтобы облегчить работу дрожжей, зерна проращивают до образования ими солода. В солоде растительным ферментом амилаза крахмал превращается в сахар (мальтозу). Размолотый солод заливают водой и сбраживают затем эту смесь дрожжами. Конечный продукт брожения — пиво содержит до 5–6% спирта, сахар, экстрактивные вещества, белки, кислоты, дубильные вещества и углекислоту.
Сырьем для получения спирта могут служить как пищевые продукты (картофель, зерновые), так и отходы деревообрабатывающей и целлюлозной промышленности (сульфитные щелока). Поскольку так называемые спиртовые дрожжи не способны сбраживать сложные сахара (полисахариды), содержащиеся в этих продуктах, то последние подвергают предварительному осахариванию (гидролизу) кислотами или ферментами.
Дрожжи, накапливаясь в бродильных производствах в виде отходов, также находят свое применение. Их используют в качестве ценной кормовой добавки в пищевом рационе сельскохозяйственных животных. Дрожжевая биомасса также хорошо усваивается организмом человека. В этом случае их употребляют внутрь в жидком виде или в таблетках. 500 г сухих дрожжей заменяют по количеству белка 1 кг свежего мяса, 41 литр коровьего молока или 33 штуки куриных яиц. В качестве прекрасного витаминного препарата достаточно ежедневно принимать 25 г сухих или 100 г прессованных дрожжей. Перед употреблением дрожжевые клетки следует убить — залить их массу кипятком.
Существует довольно интересный способ использования дрожжей в быту — для борьбы с домашними насекомыми, например муравьями. Приготавливают раствор следующего состава: 10 г варенья плюс чайная ложка суспензии из дрожжей на 100 г воды. На выявленных маршрутах следования муравьев ставят небольшие емкости, заполненные этой жидкостью. Следует максимально упрощать доступ насекомых к ней, для чего емкости подбирают с довольно низкими бортиками (всевозможные крышки от пивных бутылок), либо, вообще, обходятся без них, нанося жидкость капельками на поверхность выбранных для засады мест. Характерная особенность домашних муравьев состоит в том, что они ориентируются в пространстве при помощи усиков-антенн. Так, наткнувшись на емкость или капельку, они ощупывают ее усиками и затем, обязательно окунают их в жидкость на предмет проверки ее удобоваримости. Как правило, первые, самые смелые, разведчики насыщаются жидкостью до предела, отчего их брюшки сильно раздуваются. Затем, не имея более возможностей продолжать чревоугодие, они не спеша, переваливаясь из стороны в сторону покидают лакомую площадку, стремясь донести до сородичей радостную весть о свалившейся невесть откуда манне небесной. Очевидно, эта весть, как и новый вид, еще недавно довольно изможденных товарищей, производят неизгладимое впечатление, в результате чего появляется большая колония особей, включая иногда даже муравьиную матку, которая отличается своими крупными размерами. Присутствие прародительницы муравьиного рода подчеркивает, что предложенная жидкость признана за весьма ценное питательное снадобье. Спустя 2–3[/SIZE] дня после пиршества муравьи, как правило, начинают вымирать. Причина здесь кроется в характерном свойстве дрожжевых клеток. Они растут и размножаются с громадной скоростью (будучи одноклеточными организмами), вызывая при этом существенные изменения в окружающей среде (кишечнике муравьев). Положение усугубляется еще и тем обстоятельством, что не ведающий удовлетворения аппетит муравьев заставляет принимать внутрь вместе с пищей большие порции дрожжевых клеток. При этом концентрация продуктов обмена веществ в организме бывает настолько велика, что приводит к гибели насекомых. Трупики насекомых обычно располагаются вблизи мест с повышенной влажностью — очевидно последним минутам их жизни сопутствует сильная жажда.
Среди дрожжей есть и природные виды, дикие дрожжи, которые распространены в субстратах, содержащих сахар: на кожице плодов, ягод, фруктов, в нектаре цветов, в соке деревьев.
Так называемые осмофильные дрожжи обитают в пчелином меде. Эти дрожжи лучше используют фруктозу (сахар меда), чем глюкозу и часто являются причиной порчи
меда, а также варенья, джемов и скисания вин.

[SIZE=10pt]Аспергиллы[/SIZE]

[SIZE=10pt]Этим общим названием объединены несколько видов микроскопических грибов. Впервые они были замечены и описаны в 1729 году итальянским ученым П. Микели. Их
естественная среда обитания — верхние слои почвы. Но значительно чаще их можно встретить на различных продуктах растительного происхождения, где колонии грибов
образуют налеты разного цвета, особенно часто голубовато-зеленые, обычно именуемые в обиходе плесенями. Колонии аспергиллов появляются на хлебе, хранящемся в условиях повышенной влажности, на поверхности варенья, на влажных обоях и т.п. Если рассматривать поверхность грибницы в микроскоп, то обнаруживаются на ней характерные выступающие образования, напоминающие наконечник лейки, из отверстий которой льются струйки воды. Поэтому аспергилл принято называть еще леечным грибом.
Аспергиллы начали привлекать к себе внимание с середины XIX века как активные помощники процессов разрушения самых разнообразных материалов, как производители различных ферментов и других продуктов обмена веществ. Поскольку грибы хорошо растут в лабораторных условиях, они стали излюбленным объектом исследований. Между 1891 и 1928 годами было опубликовано более 2000 работ по аспергиллам, посвященных, главным образом, биохимии, физиологии и генетике видов этих грибов. В настоящее время продолжается их активное изучение. Аспергиллы очень удобные модели в исследованиях генетических закономерностей, путей обмена веществ, различных физиологических процессов. Особенно широкое практическое значение имеет вид аспергиллов, образующий колонии коричневого, шоколадного или черною цвета (черная плесень). Часто они развиваются на зерне (во время его хранения), на плодах, овощах, хлопчатобумажных изделиях, коже и на материалах, богатых содержанием белков. Этот вид обладает разнообразной биохимической активностью. Грибы вырабатывают целый комплекс ферментов. Среди них — крахмалоразрушающие (амилазы), разлагающие белки (протеиназы), пектиназы (действующие на склеивающее вещество растительных тканей — пектин), жироразрушающие. ферменты, ферменты, разлагающие хитин (оболочку насекомых). Пектолитическими ферментами аспергиллов производят осветление фруктовых соков и вин. Такое известное вещество, как лимонная кислота, также получается при помощи этих грибов. Кислота является отходом жизнедеятельности гриба, культивируемого, в частности, в специальных чанах — ферментерах на жидкой среде, состоящей из свекловичного отвара. При выращивании аспергиллов данным способом используется также особенность этих грибов к синтезированию витаминов: биотина, тиамина и рибофлавина. Грибница выделяет их в питательную жидкость, которую затем отгоняют специальным образом, получая нужные элементы в твердом виде.
В лабораторных исследованиях аспергиллы используются также достаточно широко, что позволило русскому ученому Л.Н.Курсанову образно назвать эту группу грибов «биохимической лягушкой». Аспергиллы чрезвычайно чувствительны к колебаниям содержания в среде минеральных источников питания, вследствие чего, возможно, их применение для определения дефицита некоторых веществ в почве (калия, фосфора, магния, меди и др.), что позволяет отказаться от менее точных и медленных химических анализов.
Штаммы данных грибов, выделенные из заплесневелых кормов, токсичны для животных и человека и способны вызывать такие заболевания, как бронхопневмонию, легочный аспергиллез, отомикоз и др.
Еще один вид аспергиллов, образующий колонии желто-зеленого цвета, также имеет практическое значение.
Грибы этого вида поражают растительные остатки почвы, различные пищевые продукты, растительные масла, зерно, воск, парафин. Возможность приспособления к такому разнообразному количеству субстратов осуществляется за счет богатого ферментного аппарата. В связи с этим грибы используются на Востоке для пищевых и хозяйственных целей в течение уже не одного столетия. Например, спиртовая промышленность Японии целиком ориентирована на помощь грибных тружеников. При приготовлении традиционной водки саке применяется рис, зерна которого гидролизованы (разложены) ферментами аспергиллов. Для этого аспергиллу создают подходящие условия. Отваренные и стерилизованные отруби риса помещаются во влажную камеру, насыщенную спорами гриба. Через 40–48
 часов отруби сплошь покрываются белой грибницей. 
Ферментом амилаза она расправляется с крахмалом, составляющим основную массу рисовых зерен. При этом крахмал разрушается до простых Сахаров. На этом этапе воздействие гриба прекращают и видоизмененное им сырье отправляют уже на окончательную «сборку» напитка. Из освоенного грибницей риса также получают и сам инструмент ее деятельности — фермент амилазу. Для этого масса отрубей мацерируется (отмокает) в воде в течение определенного времени, в результате чего получается водный экстракт фермента. Затем экстракт выпаривают в вакууме при температуре 30–40[/SIZE]° С до приготовления концентрированного продукта—порошка амилазы. В дальнейшем фермент употребляется в лечебных целях, например, в качестве средства, известного под названием така-диастазы. Така-диастаза рекомендуется в пищевой рацион тем людям, у которых собственный организм не в силах производить достаточное количество амилазы (из-за болезни поджелудочной железы), испытывает определенный дефицит в ней.
Комплекс амилаз и протеиназ, выделенных из аспергиллов, используют во Вьетнаме для приготовления соево-рисового соуса «тыонг», считающегося обязательным повседневным продуктом населения.
У нас в стране освоены при помощи грибных ферментов аспергиллов такие технологии, как очистка кожи от волосяного покрова, удаление серебра из старых пленок и пластинок, производство спирта и приготовление различных видов сыров. На последнем специализируется фермент реннетаза, который расщепляет казеин. Всего 0,02 кубических сантиметра 2-х процентного раствора фермента в состоянии свертывать 5 кубических сантиметров молока! В этом отношении грибной фермент не уступает сычугу телячьему, выделенному из животных тканей.

[SIZE=10pt]Пенициллы[/SIZE]

[SIZE=10pt]Как и аспергиллы, эти грибы наиболее часто обнаруживаются в виде плесневых налетов на субстратах растительного происхождения. Интерес к пенициллам был проявлен, когда у них впервые была открыта способность образовывать антибиотик пенициллин. Тогда в изучение этих грибов включились ученые самых разнообразных специальностей: медики, химики, бактериологи, фармакологи. И это вполне оправдало себя, поскольку пенициллин был первым открытым антибиотиком, и его применение сыграло большую роль в науке, так как ускорило открытие и введение в лечебную практику других антибиотических веществ. Лечебные свойства плесеней, образуемых колониями пенициллов, были отмечены еще в 1873 году рувскими учеными В.А.Манасеиным и А.Г.Полотебновым. Тогда их использовали в лечении кожных заболеваний и сифилиса. Ну а официальным отсчетом лечебная история пенициллов ведется с 1928 года. В том году, в Англии, профессор А. Флеминг ставил опыты в своей лаборатории над грозной бактерией стафилококком. Поддерживая жизнедеятельность бактерии в искусственной культуре, он вскоре обратил внимание на характерную особенность. Колония бактерии, развивающаяся в питательной среде, в специальной чашке, притормаживала свой рост в участках, зараженных попавшей из воздуха сине-зеленой плесенью. Флеминг выделил плесень в чистую культуру (пересеял на новую питательную среду). Затем рядом экспериментов он доказал, что действительно гриб выделяет антибактериальное вещество, способное умерщвлять клетки бактерий. Профессор назвал его пенициллином. После работ Флеминга эстафету подхватили его коллеги во многих странах мира. В течение нескольких десятков лет научные мужи вели поиски простых методов получения, очистки пенициллина и проводили клинические испытания этого препарата. В результате был выделен наиболее удачный штамм (сорт) пеницилла, который производил отвечающее многим требованиям лекарство. Ему дали кодовое название Q-176 и, поскольку он был рожден в результате скрещивания нескольких видов грибов, именовали его не иначе как мутантом. В процессе такой мутации Q-176 приобрел способности к высокому производству антибиотиков и, самое главное, к хорошему развитию в искусственных условиях.
В настоящее время работа по созданию новых, более продуктивных штаммов продолжает вестись. Теперь для этой цели прибегают к помощи различных стимулирующих факторов — облучению рентгеновскими и ультрафиолетовыми лучами, действию различных химических реактивов, вызывающих мутацию и т.д.
Лечебные свойства пенициллина особенно разнообразны. Он помогает при лечении эндокардитов, перитонита, остеомиелита, активно борется с гонококками, анаэробными бактериями, вызывающими газовую гангрену, с возбудителями менингита, дает надежду на выздоровление безнадежным больным, когда другие лечебные средства бессильны. Применение пенициллов освоено также в пищевой промышленности, в частности, в производстве группы сыров, характеризующейся наличием так называемой «мраморности». Это сыр «Рокфор» во Франции, сыр «Горгонцолла» в Италии, сыр «Стилтон» в Англии. Всем этим сырам свойственны довольно рыхлая структура, специфический вид (прожилки и пятна голубовато-зеленого цвета) и особый, запоминающийся аромат. Культура грибов используется в определенный момент процесса изготовления сыров. Обычно в заключительной его стадии творожную массу помещают для созревания в специальную камеру-теплицу с температурой 13–14
° С и влажностью 50–60[/SIZE]%, воздух которой содержит споры соответствующих грибов. В течение недели поверхность сыра покрывается пушистым белым налетом плесени толщиной 1–2 мм. Через несколько дней налет приобретает голубоватый или серо-зеленоватый цвет. Масса сыра под воздействием ферментов грибов приобретает сочность, специфический вкус и запах. Способность некоторых пенициллов расти в рыхло спрессованном твороге объясняется тем, что они хорошо переносят низкое содержание кислорода в среде (в смеси газов, образующихся в пустотах сыра, его содержится менее 5%). Кроме того, они устойчивы к высокой концентрации соли в кислороде, что только стимулирует их образовывать ряд ферментов, разлагающих жировые и белковые компоненты молока.

[SIZE=10pt]Спорынья пурпурная[/SIZE]

[SIZE=10pt]Этот вид микроскопических грибов предпочитает жить в поле на колосьях ржи или пшеницы. На пораженных спорыньей растениях в соцветиях бывают хорошо заметны склероции, имеющие вид рожков черно-фиолетового цвета. В таком виде гриб переживает зиму. Сердцевина склероциев состоит из пучка живых гиф, а оболочка — из толстостенных отмерших клеток. Содержимое склероциев богато сахаром (3–4 %), жироподобными веществами — липидами, органическими кислотами, пигментами, смолами и алкалоидами. При уборке урожая склероции попадают в почву, зимуя затем в ней.
В наше время спорынья причиняет небольшой вред посевам, поскольку повышение культуры земледелия (очистка семян, обработка почвы) резко снизило риск заражения этим грибом.
Практическое значение спорыньи состоит в наличии у нее (в склероциях) токсических веществ — алкалоидов. Наиболее ядовитым из них является эрготинин. Если употребить в пищу продукты из зараженного зерна, то его действие выразится судорогами, длительными спазмами гладкой мускулатуры. Это свидетельствует о специфическом влиянии алкалоидов на функции нервной системы. В ничтожно малых дозах алкалоиды не причиняют вреда, а наоборот, приобретают способности высокоэффективного лекарства. В связи с этим из склероциев спорыньи было налажено их производство. В 1943 году из алкалоидов химическим путем был синтезирован такой известный препарат, как ЛСД. Он применялся в качестве антагониста адреналина. В современной медицине алкалоиды спорыньи нашли применение в лечении сердечно-сосудистых и нервных заболеваний. Интересно отметить, что вещества сходной с алкалоидами гриба природы входили в состав ритуального лекарства древних ацтеков и индейцев Мексики, обладавшего галлюциногенными свойствами.
Наиболее экономически выгодным способом получения алкалоидов считается культура спорыньи на ржи. Разработана и внедрена в практику методика искусственного разведения гриба на этом растении. Для заражения посевов ржи применяют их обстрел спорами спорыньи из пневматических распыляющих пистолетов. Сбор склероциев осуществляют специальными машинами. Обычно их урожай составляет 50–150[/SIZE] кг с 1 га поля. Затем рожки спорыньи мелют в порошок, который обрабатывается для Удаления жира спиртом или эфиром. Раствор фильтруют, из него отгоняют спирт, добавляют холодной воды, в результате чего алкалоиды выпадают в осадок. Далее жидкость упаривают и извлекают тем самым уже готовые алкалоиды. Свежевыделенные алкалоиды имеют достаточно резкий запах пригорелого мяса.
В природе существуют виды низших грибов, избирающие средой свой жизнедеятельности тела различных насекомых. При этом насекомоядные грибы не признаю других источников пищи, кроме как приготовленных по особой рецептуре животных тканей. Целая система специальных ухищрений позволяет этим грибам оседлывать ползающую, летающую и прыгающую братию. Искусно доводя контакт с ними до удовлетворения собственных интересов, грибы иной раз оставляют на обозрение целые кладбища из останков жертв. Такие способности не могли обойти вниманием ученые, бьющиеся над разгадкой вопросов биологической (естественной) защиты сельскохозяйственных культур от паразитов. Благодаря этому из ряда врагов насекомых были выделены несколько групп грибов, поражающих в большом количестве и особенно эффективно, причем не только вредителей-насекомых, но и кровососущих их сотоварищей. Приручение их особого труда не составило, и успех в последующей работе с ними превзошел все ожидания. Итак, остановимся теперь на каждом отдельном виде этих грибов более подробно.

[SIZE=10pt]Энтомофторовые грибы[/SIZE]

[SIZE=10pt]Эти грибы развиваются в природе на довольно широком круге насекомых: капустной белянке, капустной моли, различных тлях, щелкунах, трипсах, яблоневой медянице, пауках, клещах. Есть среди них и особи специального назначения, действующие исключительно только против клопов, сверчков и саранчи.
Все энтомофторовые грибы образуют внутри тела насекомого довольно слаборазвитую одноклеточную грибницу. Со временем грибница распадается на отдельные элементы различной формы и размеров. Током гемолимфы эти элементы разносятся по телу хозяина и, оседая в ряде потаенных мест, начинают свое разрушительное действие. Внутреннее содержимое организма насекомого постепенно оказывается полностью разрушенным и переваренным грибными клетками. Тело насекомого приобретает вид набитого грибной тканью мешка. Сохраняется неизменным только покров этого мешка из хитина. Считается, что смерть насекомого наступает от нарушения циркуляции гемолимфы и от выделяемых грибом продуктов жизнедеятельности — токсинов и ферментов. Продолжительность периода от прорастания спор до гибели у крупных насекомых (саранчи) занимает от 5 до 8 дней, у мелких (комары, мошки, тли) не превышает 2–3
 дней.
Особенности развития энтомофторовых грибов вызывают большой интерес. Только им присущ такой характерный признак в распространении спор, как их отстрел, – причем на такое расстояние, которое порой может превысить их собственные размеры в тысячи раз. Толчок, отбрасывающий спору, образуется в результате высокого давления плазмы внутри специального спороносного образования. Массовая гибель некоторых насекомых, например саранчи, происходит в определенные часы, обычно между 15 и 17 часами пополудни. Ночью гриб приводит в порядок спороносные выступы, доводит их способность к предстоящей работе до соответствующего состояния, а обстрел из них спорами начинает рано утром, когда особи саранчи скапливаются кучами. Кроме того, что спора должна попасть на тело насекомого, ей нужно как-то закрепиться на нем прилипнуть. И здесь помогает то обстоятельство, что утром, как правило, повышена влажность от изобилия выступающей на листьях растений, траве росы. От множества спор, отброшенных грибом, образуется плотное облачко мучнистого вида. Не ожидающие какого-либо подвоха экземпляры саранчи спокойно наблюдают как оно плавно кружит над их головами, накрывая затем их целиком. Уже через сутки насекомые будут жестоко наказаны за подобное поведение. Грибы начнут свое развитие с разжижения внутренних органов тела хозяина. При этом можно наблюдать, как у насекомого растягивается по сегментам брюшко. Затем оно разрывается и изнутри начинает вытекать жидкость с элементами грибницы. В дальнейшем эти элементы прорастают, образуя на поверхности сплошной налет грибницы в виде бархатистой щетки. На брюшной поверхности погибших насекомых вырастают корнеподобные присоски, которыми гриб прикрепляет пораженную жертву к какой-нибудь поверхности. В таком виде насекомое может храниться до следующей весны. Мумифицированное таким образом насекомое представляет своего рода мину замедленного действия для живых сородичей. Отстреливаемые от него споры продолжают вершить безнаказанную агрессию гриба и чинить, тем самым, масштабную чистку рядов саранчи.
Чтобы спора в большинстве случаев добиралась до искомого субстрата (тела), компенсируя возможные недолеты и перелеты, ей предоставлены природой уникальные способности. Так, оказываясь в неподходящем для развития гриба месте, она находит в себе самой достаточное количество энергии и сил для совершения следующей серии прыжков в окружающем пространстве в поисках восприимчивого хозяина.
При развитии некоторых видов энтомофторовых грибов сопутствующий этому инфекционный процесс у ряда насекомых протекает иначе, чем у саранчи, и не носит характера общего поражения и превращения их в заминированные спорами ловушки. Например, зеленому яблоневому клопу внедрившимся грибом позволяется довольно долго и активно двигаться. Попутно гриб щедро осыпает новые и новые участки массами спор, заставляя тем самым своего хозяина исполнять роль ходячего очага болезни.
В распространении энтомофтороза большое значение имеет поведение насекомых. Например, пораженные особи саранчи взбираются на верхушки растений или кустарников, погибая там, в характерной позе, зацепившись передними и средними лапками за стебель, всегда вверх головой. Такая позиция способствует максимальному попаданию отстреливающихся спор на находящихся в нижних ярусах растений и ползающих на почве насекомых. Кроме того, высоко расположенные споры легче разносятся во все стороны воздушными потоками.
В природе первоначальное заражение энтомофторовыми грибами происходит от спор, сохраняющихся в почве или на растительных остатках. Раз, начавшись, болезнь развивается чрезвычайно быстро с последующим образованием спороносных выростов, отстреливанием из них спор и прорастанием грибов на новых особях. Нарастание болезни идет в геометрической прогрессии. Миграция (перелеты) зараженных крылатых насекомых с последующим отстрелом спор на популяции здоровых особей является наиболее эффективным путем рассеивания заболевания.
В быту энтомофторовые грибы часто оставляют следы своей деятельности на комнатных мухах, которых они избирают в качестве подходящих объектов для питания. Пораженные мухи остаются прикрепленными к оконным стеклам, стенам. Брюшки мух, сильно увеличенные в размерах, имеют между сегментами бархатистый налет из выступивших наружу спороносных образований грибов. Вокруг тел мух образуется ореол из отбрасывающихся спор.
Долгое время энтомофторовые грибы считались строгими паразитами, не способными расти вне тела хозяина. Однако исследователям удалось выделить из погибших насекомых несколько видов грибов этого семейства и вырастить их в условиях чистой культуры. При этом использовались питательные среды, богатые белками животного происхождения (мяса, рыбы, куриных яиц). В условиях культуры большое значение имеет сохранение жизнеспособности энтомофторовых грибов. Поэтому для их размножения используют также и живых насекомых. Для этой цели идеально подходят гусеницы златоглазки, выращенные в специальных инсектариях. Получая в искусственных условиях массу спор грибов, становится возможным применение их против популяций вредных насекомых. При внесении спор под сельскохозяйственные культуры используют также одновременно полив растений, что увеличивает процент заражения личинок и взрослых насекомых вдвое.
Очень впечатляющими оказались попытки борьбы при помощи энтомофторовых грибов с кровососущими насекомыми-паразитами. Обычно заражению подвергали прибрежную растительность водоемов, отстреливая при этом массы спор из специальных приспособлений. Делалось это осенью, поскольку в этот период у паразитов происходит усиленная яйцекладка, от качества которой зависит численность насекомых в следующем году. Уничтожая самок; грибы сокращали запасы зимующих яиц, чем прямо влияли на снижение поголовья рождаемых паразитов. Наибольшее число таких зараженных грибами насекомых, как комаров, встречалось под покровом растительности у водоема (75–95[/SIZE] %). Погибшие комары часто плавали на поверхности водоема или лежали на влажной зоне прибрежной земли. В воде споры грибов прорастали в грибницу, образующую студенистую пленку по всей прибрежной полосе водоема в период массовой гибели комаров. В сухих местах тела погибших комаров разрушались, а вокруг их останков четко был виден споровый налет.
Использование данных о грибных эпидемиях насекомых учитывается при прогнозировании массового размножения вредителей — насекомых. Правильно поставленный прогноз на снижение численности вредителей от влияния энтомофтороза позволяет снять запланированную химическую обработку, дать этим большую экономию средств и ограничить вред, причиняемый живой природе химическими препаратами.

[SIZE=10pt]Грибы рода Боверия[/SIZE]

[SIZE=10pt]Эти грибы отличаются от энтомофторовых собратьев тем, что паразитируют на значительно большем числе насекомых, причем как на представителях их полезных видов (тутовом шелкопряде), так и на вредных (колорадском жуке, картофельной коровке, луговом и кукурузном мотыльке). В целом ими поражается около 60 видов насекомых. Примечательно, что клещи, например, невосприимчивы к вниманию грибов (обладают иммунитетом) и в случае присутствия грибницы на своих тканях способствуют их переносу и распространению. Один из видов боверии, специализирующийся, в основном, на добывании пропитания из жуков, попутно выделяет токсины, убивающие комаров. Сила этих веществ такова, что при попадании их в водоемы вблизи мест сосредоточения насекомых, те сражаются моментально наповал.
При попадании споры боверии внутрь тела хозяина, через 32–48
 часов она прорастает в виде отдельных клеточных фрагментов грибницы. Они свободно плавают в лимфе и размножаются с большой скоростью делением и почкованием. Смерть насекомого наступает внезапно в результате блокирования циркуляции лимфы. В дальнейшем начинается разрушение частей тела хозяина. Способность грибов к освоению кроме насекомых и растительных субстратов в большой степени облегчает их разведение в искусственных условиях на средах, содержащих пивное сусло, ломтики овощей и т.п. После периода развития, включающего массовое накопление спор, приготавливают препараты для борьбы с насекомыми. Причем это может быть как взвесь чистых спор, так и их суспензия, а также отдельные части вегетативной грибницы с явно выраженными спороносными образованиями. Наибольшую известность из этих средств получил разработанный в 60-х годах Украинским институтом защиты растений препарат «Боверин». Он представляет собой густую суспензию спор. Содержание спор колеблется в пределах до 25 млрд. единиц на 1 г смеси. Также существует и аэрозольное исполнение препарата 5-процентной концентрации. Боверин успешно применяется в борьбе, например, с яблоневой плодожоркой, колорадским жуком, свекловичным долгоносиком. При опыливании аэрозолем гусениц плодожорки наблюдается массовая их гибель, что приводит к снижению червивости плодов на 60%. При опрыскивании суспензией червивость плодов снижается на 45–50[/SIZE]%. Поражение колорадских жуков и долгоносика на стадии гусениц и куколок составляет также довольно большой процент — 70–75%. У взрослых особей вредителей, обработанных боверином, количество отложенных яиц, уменьшается обычно на 50% по сравнению с контролем (незараженными экземплярами).

[SIZE=10pt]Хищные грибы[/SIZE]

[SIZE=10pt]Данный вид грибов специализируется на отслеживании, ловле и последующем умерщвлении микроскопических животных — нематод и коловраток. Грибница хищных грибов развивается в почве, на растительных остатках. Здесь грибы коротают свои дни в ожидании появления потенциальной жертвы. При помощи специальных ловчих приспособлений они осуществляют свой замысел и большинству животных не удается избежать печальной участи. Наибольшее распространение у грибов имеют так называемые клейкие ловушки — маленькие овальные или шаровидные головки, сидящие на коротких веточках и обычно обильно покрытые клейким веществом типа смолы, либо трехмерное сплетение клейких сетей, состоящее из большого числа колец.[/SIZE]

[SIZE=10pt][/SIZE]​

[SIZE=10pt]Хищные грибы: 1 — нематода; 2 —-трехмерная сеть из гиф;
3 — клейкие выросты.
[/SIZE]

[SIZE=10pt]Нематода имеет очень маленькие размеры — длина ее варьирует от 0,1 до 1 мм. Однако гифы, сплетающие ловушки, обладают размерами еще меньшей величины, вследствие чего охота не всегда развивается по благоприятному сценарию для гриба. Но как бы то ни было, если нематоде удается выскользнуть из цепких грибных объятий, она все равно будет обречена, поскольку на теле остаются обрывки грибницы. Вопрос только времени, когда они прорастут в новое полноценное образование и окончат жизнь животного.
Сам процесс ловли нематоды клейкими сетями напоминает некий аттракцион, в котором гриб играет довольно зловещую роль. Представ перед лабиринтом из гиф нематода проникает внутрь, пытаясь найти в нем короткий путь наружу. При этом неизбежно ее тело касается сети, а затем прилипает к ней. Пытаясь освободиться, животное активно двигается, извивается и в результате все больше прилипает к сети. Затем движения ее становятся вялыми, а потом вообще прекращаются. Через некоторое время из сети-ловушки вырастает гифа и вплотную приближается к потерявшей силы нематоде. Продырявливая оболочку нематоды гифа, проникает в ее тело. Внутреннее содержимое тела начинает пронизываться ответвлениями гиф, которые постелено, высасывают из него все соки. Процесс поглощения грибом их продолжается около суток. После этого нетронутой остается только оболочка нематоды.
У некоторых хищных грибов ловушки образуются в виде колец, лишенных клейкого вещества. Их действие осуществляется механическим путем. Обычно такие кольца состоят из трех сегментов, располагаясь на коротких веточках грибницы. Внутренняя поверхность отличается необычайной чувствительностью. Любое даже незначительное раздражение вызывает их мгновенное сокращение (в течение 0,1 с). Сегменты надуваются, почти полностью закрывая собой просвет кольца. Если нематоде суждено попасть в такую ловушку, то шансов выбраться из нее практически не остается. Гибель происходит от механического сдавливания в кольце, поскольку диаметр ее тела в месте захвата уменьшается почти вдвое. Механизм действия сжимающих колец управляется специальным рецептором ацетилхолином, вызывающим сокращение сегментов.
[/SIZE]

[SIZE=10pt][/SIZE]​

[SIZE=10pt]Кольца хищных грибов: а — положение до захвата жертвы; б — положение в момент захвата жертвы — нематоды. Хищные грибы хорошо растут в лабораторных условиях. Однако, имея достаточно пищи, они забывают про свои чудо-ловушки и не образовывают их. Но стимулировать их появление возможно, напомнив грибам об естественном источнике питания — нематоде и, в частности, ее собственным присутствием в питательной среде. Таким образом, осязая жертву, гриб снова становится хищником. Уникальные способности хищных грибов позволяют занять им достойное место в списке активных борцов с вредителями сельскохозяйственных культур.[/SIZE]

[SIZE=10pt]Опенок[/SIZE]

[SIZE=10pt]Во многих старинных лечебниках содержатся сведения об антираковых свойствах различных шляпочных съедобных грибов. В наше время проведены многочисленные опыты по выявлению среди этих грибов видов с ярко выраженной противоопухолевой активностью. Особенно интенсивно эти исследования ведутся в Японии. Это объясняется развитым научным потенциалом этой страны, традиционной склонностью японцев к растительной пище, а также предпочтением использования лекарств природного, естественного происхождения.
Наибольший процент активных видов грибов зарегистрирован среди так называемых дереворазрушающих грибов, развивающихся на древесине. Это опенок, гриб-баран, или грифоля курчавая, и вешенка. Рассказ о них начнем с опенка.
Опенок выращивается в искусственной чистой культуре на жидкой питательной среде. Такую среду обычно разливают в чаны — ферментеры, куда затем и вносят посевной материал в виде кусочков грибницы. В период развития грибницы накапливаются различные вещества — белки, ферменты, кислоты, витамины. Причем они присутствуют как в ее ткани, так и в жидкой среде. Их выделяют специальным методом, получая, таким образом, необходимое для производства лекарственных препаратов сырье. В различных экспериментах над подопытными животными было выявлено, что у опенка наиболее эффективными свойствами борьбы с раковыми клетками наделены белковые соединения. Так, они в 81% случаев тормозили рост саркомы, карциномы, рака молочной железы, опухолей нервной системы, а также развитие лейкемии.
Помимо противоопухолевых веществ опенок производит и другие вещества довольно полезного действия. Основная их доля падает на ферменты. Например, ферменты тромборастворяющего действия. Работа этих ферментов проявляется в рассасывании кровяных сгустков — тромбов, и в некоторых случаях благодаря этому удается избежать сложных операций.
В пищевой промышленности Японии пользуются запатентованными средствами из ферментов гриба, специализирующихся на борьбе с бактериями, так называемых хитиназ. Благодаря им удается избежать заражения бактериями консервируемых продуктов.
В связи с тем, что во многих странах остро ощущается потребность в кормовом белке, возможно устранение этого дефицита обогащением грибницей опенка различных растительных материалов — отходов сельскохозяйственного и лесоперерабатывающего производств. Солома, кукурузные кочерыжки, льняная костра, подсолнечная лузга, опилки, освоенные опенком, представляют собой высококалорийную пищу, которую и предлагают на корм скоту. Исследование биологической ценности грибных клеток показало, что содержание незаменимых аминокислот в них значительно превосходит аналогичное в таких продуктах, как молоко и картофель, а важнейший серосодержащей аминокислоты — метионина вообще не поддается сравнению, превышая показатели растительных тканей во много раз. Наличие в грибнице витаминов, кислот, жироподобных веществ усиливает значение получаемого при помощи опенка сырья.
Освоенный грибницей субстрат из растительных остатков может с успехом применяться и в качестве органических удобрений. Например, компост из опилок, полученный при участии гриба и внесенный в почву, в 3 раза повышает урожай салата и огурцов. Отмечено также положительное влияние от внесения субстратов под многие овощные культуры, причем здесь грибное сырье может заменить собой все виды других химических и биологических удобрений. Будучи внесенной в почву, грибница входит в состав ее микофлоры, которая разлагает растительные остатки и принимает участие в общем круговороте органических веществ.
[/SIZE]

[SIZE=10pt][/SIZE]

[SIZE=10pt]Гриб-баран(грифоля курчавая)[/SIZE]

[SIZE=10pt]Это довольно оригинальный по внешнему виду гриб. Плодовое тело имеет общее основание (ножку), из которого вырастают многочисленные выросты, увенчанные шляпками. Диаметр такого образования может составлять 30 см. Гриб-баран развивается в основном на корнях дубов, причем предпочтение отдает живой породе. Из плодового тела гриба выделены белковые соединения, обладающие высокой противоопухолевой активностью (96%).[/SIZE]

[SIZE=10pt]Вешенка[/SIZE]

[SIZE=10pt]По характеру своего воздействия на организм больного человека вешенка отличается от предыдущих видов. Прежде всего, это касается природы тех веществ (выделенных из гриба), при помощи которых оно и осуществляется, — так называемых полисахаридов. Полисахариды гриба тормозят развитие различных злокачественных новообразований, однако, при этом прямого влияния на них не оказывая. Эффекта они добиваются несколько иным путем. Полисахариды повышают активность клеток тимуса (вилочковой железы, ответственной за иммунитет), вовлекая их в работу на создание мощного иммунологического механизма, направленного на подавление жизнедеятельности раковых клеток. Такую взаимосвязь удалось проследить в ряде экспериментов над мышами. Так, в случае удаления вилочковой железы, полисахариды были бессильны помочь больным особям, и только когда железа оставалась на месте, пусть даже со значительным понижением своих функций, способности грибных «агентов» проявлялись в должной степени.
Благодаря тому, что полисахариды (основные лекарственные вещества вешенки), не только борются с конкретным заболеванием, но и попутно приводят в норму ослабленную иммунную систему, возможности их применения достаточно широки. Целый ряд заболеваний, вызванных в большой степени понижением способностей защитных сил организма, достаточно хорошо поддается излечению. Среди них можно отметить заболевания кожи
(фурункулы, гнойники и т.п.), желчно-каменную болезнь, гипертоническую болезнь, а также болезни, связанные с радиоактивным облучением. В последнем случае, используются не только полисахариды, но и в большом количестве сами плодовые тела вешенки. Клетчатка гриба, не перевариваясь организмом, обладает способностью аккумулировать из него радионуклиды и, естественно, выводить их наружу.
Еще одно неоспоримое преимущество полисахаридов вешенки — в их низкой токсичности. Причем это свойство сохраняется даже при довольно длительном периоде употребления этих препаратов.
В качестве сырья для получения полисахаридов используют природные и полученные в искусственной культуре плодовые тела вешенки, грибницу, выращиваемую на твердых субстратах или на жидкой среде.
[/SIZE]

[SIZE=18pt]ПОЧВЕННЫЕ ГРИБЫ И ИХ ВЫРАЩИВАНИЕ[/SIZE]
[SIZE=10pt]Почвенными грибами называются виды, поселяющиеся на разлагающихся растительных остатках — опавших листьях, хвое, ветках. Они питаются за счет содержащихся в этих материалах питательных элементов, способных обеспечить им достаточно полноценную жизнедеятельность.[/SIZE]

[SIZE=10pt][/SIZE]

[SIZE=10pt]Шампиньоны[/SIZE]

[SIZE=10pt]Шампиньоны В[/SIZE][SIZE=10pt]? настоящее время шампиньоны выращивают более чем в 60 странах мира. На их долю приходится почти 80% объема всех выращиваемых в искусственных условиях грибов. В природе встречаются различные дикорастущие виды шампиньона, которые довольно широко отличаются друг от друга, как по внешним признакам, так и по 
требованиям, предъявляемым к условиям среды обитания. Это обыкновенный, луговой и полевой шампиньоны. Излюбленные места их распространения — городские газоны, свалки, скотные дворы, открытые пространства лугов. Естественным субстратом (питательной средой) дикорастущим шампиньонам служат разлагающиеся органические материалы почвы. Долгое время попытки развести дикорастущие виды шампиньонов оказывались неудачными. Это продолжалось до тех пор, пока в кандидатах на роль «домашнего» гриба не появился так называемый двуспоровый шампиньон. Этот вид, кстати, очень редко наблюдаемый в природе, исключительно легко «пошел на контакт», вследствие чего долгожданные поиски, наконец, увенчались успехом.
Еще в 1868 году были определены необходимые для удачной культуры условия: темнота, достаточная влажность, температура 12–16[/SIZE]°С и особо подготовленная почва. Так, в частности, массовое выращивание шампиньонов проходило в известковых пещерах окрестностей французской столицы. Здесь грибную культуру поддерживали круглогодично. Кроме того, близкое расположение большого города, обеспечивало стабильный сбыт продукта. Французский ученый Миэж (1907 г.) так рекомендовал желающим разводить шампиньоны у себя в комнатах или других помещениях: «Конский навоз без соломы накладывается в ящики толщиной 25 см и ему дают перегореть в течение нескольких дней, после чего его придавливают руками и производят посев грибницы на глубину 10–12 см. Затем прикрывают ящик соломой. Через 5–6 недель начинают появляться первые шампиньоны». 
В России промышленное производство шампиньонов было начато в 1848 году известным огородником-грибоводом Е.Грачевым. Тогда в основном использовались для этой цели теплицы.
Культивируемый двуспоровый шампиньон обладает более ценными вкусовыми качествами, чем его дикие сородичи, а технология его выращивания довольно доступна и проста, поэтому не приходится жалеть, что он стал единственным их всех видов шампиньонов, прижившимся на огородной грядке.

[SIZE=10pt]Внешние признаки и требования шампиньона двуспорового к условиям выращивания[/SIZE]

[SIZE=10pt]Шляпка гриба в диаметре достигает 10 см, полукруглая, выпуклая, с возрастом распростертая, белого цвета, позднее грязно-коричневая, чешуйчатая или гладкая. Мякоть плодового тела плотная, белая, сочная, на изломе розовеет или краснеет, обладает кисловатым вкусом. Нижняя сторона шляпки в молодом возрасте гриба имеет розовато-серую окраску, в зрелости — темно-коричневую.
Споровый порошок темно-коричневый. Ножка длиной 3–6
 см, толщиной 1–2[/SIZE] ем, гладкая, цилиндрическая, к основанию суженая, полая или цельная, с кольцом.
Шампиньон двуспоровый не требует для своего развития сожительства с древесными растениями, что совершенно необходимо так называемым микоризным грибам (белому, подберезовику, подосиновику). Он извлекает пищу из растительных остатков, при помощи грибницы, пронизывающей сетями гиф почву.
Для получения благоприятных результатов в разведении шампиньонов совершенно необходимо соблюдать некоторые условия. Среди них первым, конечно, является применение качественного посадочного материала — грибницы. Затем следуют уже условия правильного приготовления субстрата (компоста), в котором предстоит развиваться грибу, соблюдение соответствующих параметров микроклимата на разных стадиях выращивания, и, наконец, использование покровной смеси достаточно хорошего качества. Из этих слагаемых, собственно, и состоит весь процесс выращивания шампиньонов в искусственных условиях. Начнем описывать этот процесс по порядку с приготовления питательной среды для грибов.

[SIZE=10pt]Приготовление компоста (питательной среды)[/SIZE]

[SIZE=10pt]Как правило, этот этап считается очень ответственным, поскольку на нем закладывается основа жизнедеятельности грибной культуры.[/SIZE]

[SIZE=10pt]
Схема формирования компостного штабеля
[/SIZE]

[SIZE=10pt]Питательную среду обычно составляют из соломы и навоза. Солома предпочтительней всего выбирается пшеничная или ржаная, навоз лучше всего конский, но можно применять и свиной, коровий, овечий, а также кроличий и птичий помет.
Следует соблюдать определенные нормы расхода соломы для субстрата, поскольку от этого зависит полноценность приготавливаемого питания. Наименьший объем соломы должен составлять 100 кг. Меньшим количеством обойтись никак нельзя, иначе не произойдет так называемой ферментации компоста. Ферментация смеси соломы и навоза осуществляется различными микроорганизмами. Они разлагают твердые компоненты смеси, приготавливая из нее удобную для развития грибницы шампиньона среду. Запустить механизм их действия на «полную катушку» позволяет употребление растительного сырья в необходимом и определенном количестве.
Чрезвычайно важным является момент увлажнения смеси. Здесь следует сказать, что нельзя допускать как недоувлажнения, так и переувлажнения. В случае избытка воды питательный компост не отдаст своих внутренних запасов грибнице вследствие воздухонепроницаемости структуры, и это может окончиться ее гибелью. Если воды недостаточно, то компост опять же не станет удобным источником питания: из-за плохой ферментации его компоненты останутся в труднодоступном для грибных гиф виде. Как видим, нужно учитывать возможность таких отклонений и потому пытаться решить проблему увлажнения оптимальным образом. Для этого необходимо правильно рассчитать норму воды на единицу сухого веса смеси, а также соблюсти | правильную технологию замачивания материалов. Для увлажнения 100 кг сухой соломы рекомендуется использовать 350–400
 литров воды, для увлажнения 100 кг навоза — 100 литров. Итого, если имеется в наличии 100 кг соломы и 100 кг навоза общий объем воды в их увлажненной смеси должен составить 450–550[/SIZE] литров.
Солому и навоз увлажняют по отдельности. Солому укладывают в какие-либо емкости и заливают водой. Если солома спрессована в тюки, то их необходимо развязать, распустив массу. Замачивание соломы продолжается 1 -2 дня.
Увлажнять солому можно, за неимением подходящих емкостей, путем полива водой из шланга или ведер. В этом случае растительную массу раскладывают прямо на земле. Степень насыщения водой определяют на глаз (потемневший цвет соломы) и на ощупь (по выделению влаги из горсти сжатого в руке пучка стеблей). Последним способом не всегда бывает возможным достичь оптимальных параметров влажности, поэтому им желательно пользоваться, в крайнем случае.
Далее рассмотрим несколько составов для компостной смеси, особенно часто применяемых при выращивании грибов.
Состав I: солома (воздушно-сухая) — 100 кг, помет куриный 80–100 кг, гипс — 6 кг.
Состав II: солома (воздушно-сухая) — 100 кг, навоз — 100 кг, мочевина — 2,5 кг, гипс — 8 кг, мел — 5 кг, суперфосфат — 2 кг.
Для приготовления качественного компоста лучше всего брать свежий помет или навоз, так как с хранением уменьшается их питательная ценность. Необходимо следить также за тем, чтобы в помете или навозе не было компонентов подстилки сельскохозяйственных животных и птиц. Содержащиеся в подстилке опилки и стружка деревьев хвойных (ввиду присутствия в них смолистых веществ) могут отрицательно повлиять на жизнедеятельность грибов. В состав II, как показано выше, входят удобрения. Их используют в связи с тем, что навоз уступает помету по содержанию азота и фосфора — важнейших питательных элементов, используемых грибами при развитии.
Приготовление компоста, или ферментация, — это сложный микробиологический процесс, сопровождающийся обильным выделением аммиака, углекислого газа и паров воды. Поэтому его следует проводить в хорошо проветриваемом помещении, либо под навесом на открытом воздухе, не допуская попадания атмосферных осадков на компост. При этом компостную кучу можно накрыть сверху полиэтиленовой пленкой, оставляя открытыми боковые стороны.
Для того чтобы компостный бурт полностью был охвачен ферментацией, требуется его соответствующим образом уложить. Предварительно увлажненные солому и навоз делят на 3 или 4 приблизительно равные части и укладывают в штабель послойно. На каждый слой соломы кладут слой навоза, причем должно соблюдаться соотношение: не менее трех слоев, как того, так и другого. Каждый слой соломы дополнительно слегка увлажняют (сбрызгивают поверхность водой), чтобы уменьшить потери от испарения и, в случае выбора состава II, посыпают сверху мочевиной по 700 г на каждый слой, если слоев три (и по 600, если слоев четыре). Бурт должен быть высотой до 1,5 м, шириной до 1 м и длиной около 1,3 м.
Через 5–6 дней после закладки штабеля делают первую перебивку. При этом все части смеси меняют местами, верхний слой опускают, нижний поднимают вверх, тщательно перетряхивают вилами и дополнительно увлажняют. Еще спустя 4–5 дней делают вторую перебивку, затем через 3—4 дня — третью, а еще через 3–4 дня компост, наконец, перемешивают в четвертый, последний раз. При внесении мела (для создания оптимальной кислотности), гипса и суперфосфата в увлажненный субстрат необходимо как можно равномернее распределить эти материалы, чтобы компостируемая масса поглотила бы их всем своим пространством, а не отдельными участками. Перебивка осуществляется с целью тщательного перемешивания всех компонентов смеси и получения, как правило, более однородного состава, а также обеспечения доступа воздуха во все слои компостного штабеля, остро необходимого для жизнедеятельности микроорганизмов, ведущих процесс ферментации.
Если ферментация протекает по благоприятному плану, то об этом достаточно красноречиво будет свидетельствовать температура горения компоста. На 2–3 день после его закладки температура внутри массы на глубине 30 см должна уже подскочить до 55–70°С. В дальнейшем она будет таковой на протяжении всего периода приготовления питательного субстрата. Если установится достаточно низкая температура, то это признак того, что компост недостаточно ферментируется. Причины такого явления возможны две: либо недостаточное увлажнение, либо из-за пересыхания компоста от излишнего выветривания. Устранить это следует таким образом. При перебивке в компост добавляют изрядное количество воды, а саму массу плотно утрамбовывают. Чтобы компост не подвергался отрицательному влиянию ветров, его дополнительно прикрывают пленкой из полиэтилена.
Если ферментация проходит более-менее без отклонений, то обычно через 25 дней ее считают состоявшейся. К этому времени из компоста не будет доноситься запаха аммиака, а его компоненты приобретут темно-коричневый цвет. На ощупь у них будет рыхлая и сыпучая структура, отдельные соломины, извлеченные из кучи, могут быть разорваны очень легко, без усилий. Взятый горстью компост не прилипает к рукам, при сжатии легко пружинит, а между пальцами просачиваются капельки воды. Если вода будет, однако, выделяться ручейками, то придется констатировать переувлажнение компоста. В этом случае его целиком необходимо просушить, разбросав по поверхности тонким слоем и прикрыв сверху газетами. Через полчаса в него добавить 1–2 кг мела и еще раз перемешать.
Из 100 кг соломы и 100 кг навоза на конечной стадии приготовления субстрата получается около 300 кг компоста готового к посеву грибницы.
При перебивках компоста необходимо следить за тем, чтобы он ни в коем случае не контактировал с землей (во избежание заражения вредными микроорганизмами). Поэтому, если штабель формируется на открытом воздухе, между ним и землей обязательно прокладывают изолирующий материал: рубероид, листы оргалита. Чтобы с большей гарантией подстраховаться от неприятных сюрпризов, компост можно пастеризовать, то есть обработать паром при помощи парогенератора.
В Польше при подготовке компоста пользуются специальным способом, разработанным лабораторией культивирования грибов Института овощеводства города Скерневицы. Компост укладывается в пластмассовые перфорированные ящики. Их обычно располагают в подвальных помещениях в виде трехъярусных стеллажей. Когда компост загружается в ящики, температура его составляет 55°С.
Через 3 дня она падает до 25°С — пригодной для посева грибницы. До набивки в ящики компост подвергается пастеризации в специальной камере. В ней в течение 12 часов поддерживается высокая температура воздуха — 65°С путем непрерывной подачи пара, смешанного со свежим воздухом. Затем температуру снижают до 50 и далее в течение следующих дней (5–7) понижают на 20 каждые сутки. Обеззараженный таким образом компост представляет собой благоприятную среду для грибницы шампиньона, что, конечно, отзовется в будущем достаточно стабильным и высоким урожаем.

[SIZE=10pt]Набивка компоста[/SIZE]

[SIZE=10pt]Для выращивания шампиньонов в теплое время года пригодны подвалы, погреба, сараи, землянки, теплицы, небольшие, затемненные соломенными матами парники. Можно разводить грибы и в открытом грунте, используя, в основном, тенистые места, а также места, расположенные с северной стороны любых построек, где всегда наблюдается более низкая температура воздуха.
При благоприятных погодных условиях можно провести два оборота культуры в год: весенне-летний и летне-осенний.
В специально оборудованных системами отопления и вентиляции (приточной и вытяжной) помещениях можно выращивать грибы круглый год.
Шампиньоны безразличны к свету и могут обходиться при развитии его полным отсутствием. Прямые солнечные лучи даже вредны для плодовых тел, так как обжигают нежную кожицу шляпок и высушивают покровный грунт.
На приусадебном участке можно построить из подручных недефицитных материалов своего род инкубатор для получения грибов—шампиньонницу. Сначала для этого отрывают небольшой котлован в почве глубиной 0,5 м и размерами в плане 2x2 м. Затем сколачивают из досок каркас шампиньонницы. Снаружи его обивают досками. Изнутри на стены и крышу натягивают полиэтиленовую пленку или рубероид. Для утепления шампиньонницу обкладывают пенопластом, торфом. Дно шампиньонницы лучше всего исполнить из армированных цементных плит. Компост накладывают прямо на них, заражают грибницей и перекрывают все пути контакта внутреннего пространства с окружающей средой, кроме отверстий воздухоотводящего и воздухопроводящего каналов. Общий сбор грибов с шампиньонницы данных размеров может составить до 50 кг.
Какой бы способ ни был выбран в качестве основного для разведения шампиньонов, любой из них начинается с набивки или укладки компоста в специальное образование — грядку. При этом тщательно соблюдается условие, какими бы ни были длина и ширина грядки, ее высота (глубина) должна быть не менее 20 см и не более 30 см. Увеличение размера высоты (глубины) грядки, как правило, никак не отражается на развитии культуры, поскольку нижние слои компоста будут недоступны для разложения грибницей ввиду малого присутствия в них кислорода. В этом случае грибные гифы, однако, все равно пытаются достать всю питательную массу до конца, чем значительно удлиняется период наступления планового плодоношения. Если шампиньоны выращивают на открытом воздухе, то для гряд предварительно выкапывают в земле траншеи (глубиной до 30 см). На дно насыпают гравий, крупнозернистый песок слоем 5 см. Стенки траншеи укрепляют досками. Затем их заполняют компостом. Сам компост не должен контактировать с землей по вполне понятным соображениям (из-за возможности заражения вредными микроорганизмами). Дренажный материал (гравий и песок) желательно перед употреблением промыть в воде. Заглубление в почву гряды необходимо потому, что этим устраняется возможность пересушивания компоста. Однако можно устраивать гряды и на поверхности земли, используя в качестве стенок доски, листы оргалита (полосы) и уберегая тем самым поверхность субстрата от излишнего испарения. Гряду лучше всего формировать выпуклую с толщиной компоста посередине — 20 см, а по краям до 15 см. Выпуклая гряда имеет большую площадь плодоношения по сравнению с плоской.
Набивают компост в гряду следующим образом. Нижний слой уминается слабо, каждый последующий — более сильно. Если при этом ощущается, что компост на ощупь клейкий (переувлажненный), то до закладки в гряду его следует разбросать тонким слоем на поверхности и просушить.
Поверхность гряды должна быть тщательно выровнена, не иметь значительных впадин и бугров. Обычно при расходовании 100 кг компоста покрывается 1м2 посадочной площади.
Компостом также можно набивать ящики (слоем не менее 20 см) и полиэтиленовые мешки. Размеры их подбираются такими, чтобы в них можно было уложить не менее 10–15
кг компоста слоем до 30 см.
После набивки гряд на открытом воздухе их изолируют от воздействия солнечного света и осадков навесами из брезента или любого световодонепроницаемого материала, установленными на деревянных опорах.[/SIZE]

[SIZE=10pt]Посадочный материал[/SIZE]

[SIZE=10pt]Приготовленный и уложенный компост засевают кусочками грибницы шампиньона. Грибница должна быть свежей и стерильной (не содержащей на своих тканях возбудителей инфекции — бактерий, низших грибов). Обычно грибницу такого состояния можно получить только в условиях оснащенной специальным оборудованием лаборатории. Здесь предназначенные для переноса грибницы субстраты — зерно или компост проходят спецподготовку — стерилизацию. Стерилизация для уничтожения спор вредных микроорганизмов производится при помощи автоклава. Автоклав представляет собой котел, внутри которого создаются температура и давление пара, губительные для вредных микроорганизмов. Побывав в нем определенное количество времени, питательный субстрат очищается от присутствия чужеродных организмов, в какой бы то ни было форме. Полученную чистую среду (зерно или компост) засевают (в условиях строгой антисептики) спорами шампиньонов. В дальнейшем из них прорастает грибница, а сами зерно или компост начинают играть роль ее носителей. Подкармливаясь ими, время от времени, грибница обосновывается в них, словно в некоем жилище, ожидая «приглашения» на этап заложения культуры. Если такого рода «приглашение» затягивается, то в ее жизнедеятельности могут возникнуть осложнения, приводящие нередко даже к гибели. В связи с этим необходимо учитывать, что оптимальный срок хранения грибницы до посева на зерне (в холодильнике) при температуре 0-+3°С составляет около 3 месяцев, на компосте — до года.
Зерновая грибница отличается большей урожайностью, но вместе с тем обладает довольно капризным характером. Отчасти это связано с тем, что с детства грибница была окружена обилием питательных веществ, их доступность и калорийность «избаловали» ее. Грибница, выращенная на зерне, предъявляет высокие требования к качеству субстрата и условиям выращивания. Любое незначительное отклонение способно повлиять на ее активную работоспособность. Поэтому начинающим грибоводам лучше всего приобретать компостный посадочный материал — грибницу, развитую на компосте. С самого начала обустройства в относительно бедной питательной среде она жила заботой о выживании, чем, несомненно, подготавливала, силы на будущее быть способной постоять за себя. Такая грибница довольно успешно обходит препятствия, вызванные оплошностью при приготовлении компоста, а также несоблюдением оптимальных условий для разведения культуры.
В России с 1983 года на выращивании качественного посадочного материала специализируется совхоз «Заречье» в Московской области. На его базе функционирует завод, выпускающий до 500 тысяч литров грибницы в год. На изготовление отвечающего всем стандартам материала уходит 3–4
 месяца кропотливой работы. За несколько лет на заводе была создана собственная коллекция продуктивных, устойчивых к болезням штаммов (сортов), обеспечивающих высокие урожаи. Их количество достигает 30. Различаются они тем, что из них вырастают шампиньоны разного цвета и вида: с белыми, кремовыми, коричневыми шляпками, гладкие, с чешуйками, маленькие, большие — одним словом, грибы на любой вкус. Коммерческая грибница выпускается двух распространенных видов — зерновая и компостная. Зерновая грибница поступает в продажу в перфорированных целлофановых пакетах, компостная — в стеклянных банках.
Обычно грибницей из одной банки засевают 1,5 м2 площади гряды, а зерновым мицелием из пакета — Зм 2[/SIZE]?.
Перед посадкой грибницу, хранившуюся в холодильнике, следует прогреть в течение суток при комнатной температуре.
Можно попытаться в качестве посадочного материала использовать и дикую грибницу. Для этого ее отыскивают в природной среде обитания шампиньона двуспорового. Гриб произрастает в степной и лесостепной зонах. Иногда встречается на юге лесной зоны (примерно на широте Москвы). Начинают поиски грибницы в сентябре-начале октября, когда наступает пора плодоношения грибов. Сначала аккуратно удаляют с места-донора все готовые тела. Затем снимают верхний слой перегноя до зоны почвы, переплетенной многочисленными белыми грибными нитями — гифами. Наклонившись, обнюхивают оголенный участок. В нос должен ударить резкий запах приятного грибного аромата. Ножом или мусорным совком извлекают крупные куски — блоки грибницы размером с кирпич. Далее их можно хранить в подсушенном состоянии в темном месте 30–40 дней. Следует заметить, что посадку культуры грибов при помощи дикой грибницы можно осуществлять в исключительных случаях, скорее ради эксперимента, нежели в качестве основного приема, поскольку трудно гарантировать ее 100-процентное приживление (в новых для нее условиях).

[SIZE=10pt]Посадка грибницы[/SIZE]

[SIZE=10pt]Обычно в стеклянной банке содержится 700 г грибницы, в пакете — 350–400 г. Непосредственно перед заражением компоста их открывают. Содержимое извлекают на свет, отламывают кусочки размером с голубиное яйцо. Затем рукой или совком приподнимают слой приготовленного субстрата и на глубину 5–7[/SIZE] см помещают грибной кусочек. (Зерновой мицелий обычно рассыпается, и его при посеве используют горстями.) Уложив грибницу в одном месте, ее плотно прижимают приподнятым слоем компоста и переходят к посеву в следующем. Места посадки располагают в шахматном порядке на расстоянии 15–20 см друг от друга.
Зерновую грибницу можно сеять иным путем. Ее размельчают до отдельных зерен и посыпают ими поверхность грядки, руководствуясь нормой расхода на 1 м2. Потом грибницу накрывают слоем компоста толщиной 5–6 см. Около 1/3 предназначенной для посадки грибницы рассыпают сверху на поверхности грядки. Это делается для того, чтобы ускорить разрастание мицелия шампиньона в верхнем слое субстрата и защитить последний от развития вредных микроорганизмов, в частности плесени.
После окончания посадки грибницы компост накрывают сверху газетами, либо другой, хорошо впитывающей воду бумагой. Такая предосторожность необходима, поскольку ею обеспечивается защита от попадания на компост спор возбудителей инфекции. Также поддерживается стабильная влажность и, наконец, обеспечивается в питательной среде высокий уровень углекислого газа. Газ получается в результате обмена веществ в тканях грибницы и служит хорошим стимулятором ее развития (до периода плодоношения).
После посева грибницы необходимо следить за тем, чтобы прикрывающий бумажный слой был постоянно влажным. Для этого его поливают из лейки с мелким ситечком. При этом ни в коем случае нельзя допускать попадания воды внутрь субстрата. По мере подсыхания верхнего слоя с бумагой увлажнение повторяют.
Посадку грибницы осуществляют при температуре субстрата, не превышающей 25°. В случае, если значение температуры оказывается выше, ждут пока оно не понизится до нормы. Если в течение нескольких дней температура не понижается и субстрат продолжает гореть, то это свидетельствует о незаконченности процесса ферментации. Здесь требуется помочь микроорганизмам, осуществляющим ее, ускорить их деятельность. Для этого субстрат разрыхляют, увеличивая доступ кислорода. Вследствие данного приема микроорганизмы испытывают приток свежих сил, что позволяет им быстрее сыграть свою роль в окончательном разложении субстрата.

[SIZE=10pt]Уход за культурой в период развития грибницы[/SIZE]

[SIZE=10pt]Период роста и развития грибницы шампиньона продолжается около двух недель. Все это время температура в компосте должна соответствовать определенным параметрам и быть на 2–3° выше температуры окружающей среды. Так, при температуре воздуха — 21–23[/SIZE]° С, температура в компосте колеблется в пределах 24–27°С. Если температура компоста близка к 30°С, то рост грибницы прекращается. В случае дальнейшего повышения температуры происходит необратимое явление — гибель грибницы. Замер температуры следует осуществлять градусником, который втыкают в компост в нескольких местах на достаточную глубину, чтобы получить более объективную картину.
Снизить температуру помогает активное проветривание культуры (на улице с гряд снимают слой покрытия из бумаги, а в помещении открывают окна).
Температура в компосте может также понизиться до 17–18° С (нижнего предела для разрастания грибницы). Тогда культуру необходимо согреть, укрыв поверхность гряд сухими соломенными матами или сухой мешковиной.
Нельзя забывать в период развития культуры и о поддержании высокой влажности окружающего воздуха. Для этого при выращивании шампиньонов в открытом грунте применяют натянутые над компостом мокрые полотенца (в непосредственной близости от его поверхности), а также ведут умеренный полив верхнего его слоя. В помещениях увлажняют стены и пол так, чтобы на них постоянно присутствовали бы капельки воды, либо ставят емкости с водой.
Чтобы удостовериться в том, что процесс развития гриба идет правильно, поступают обычно следующим образом. Приподнимают верхний слой компоста в 2–3 местах, куда были посажены кусочки грибницы. При хорошей приживаемости грибницы через неделю после посева от каждого кусочка вглубь субстрата проникают белые нити на 5–7 см. Это достаточно наглядно демонстрируется при использовании приема контроля. В случае медленного разрастания грибницы период роста культуры затягивается на срок до 4 недель. Такому повороту в немалой степени способствует низкая влажность субстрата, а также пониженная температура (ниже 20°С).
Если компост подсыхает, то его необходимо дополнительно увлажнить, перемешать и как можно плотнее утрамбовать. Затем следует высеять новую порцию грибницы и накрыть поверхность культуры влажной бумагой, следя в дальнейшем за ее состоянием (достаточно влажным).
Спустя 2–4 недели после посева грибница обычно пронизывает весь субстрат и образует на поверхности его сплетение нитей в виде паутины. Этот признак должен служить сигналом к тому, что подошло время перейти к следующему этапу выращивания культуры.

[SIZE=10pt]Засыпка компоста покровным грунтом[/SIZE]

[SIZE=10pt]Бумагу с поверхности гряд удаляют. Теперь на нее следует уложить покровную землю. Роль покровной земли исключительно важна. Без нее появление плодовых тел было бы невозможно. Кроме того, что она снабжает грибы водой, ею обеспечивается благоприятный водно-воздушный режим.
К покровному слою предъявляют следующие требования. Земля, используемая в нем, должна обладать высокой влагоемкостью (30–35
%), быть рыхлой, воздухоемкой (около 40%), а во время полива не должна слипаться настолько, чтобы не допустить беспрепятственного газообмена между компостом и воздухом.
Покровный грунт стимулирует появление плодовых тел и служит защитой грибнице шампиньона от неблагоприятных воздействий окружающей среды.
Покровную смесь готовят из нескольких материалов. Это обычно хорошо разложившийся низинный торф и известковая крошка в соотношении 3:1 по объему. Существуют также различные варианты. Вот некоторые из них: 1) 9 частей торфа и 1 часть мела. 2) 5 частей торфа и 4 части огородной почвы плюс 1 часть мела. 3) Огородная или дерновая почва с 3% (по объему) мела. Мел или известковая крошка необходимы для создания в покровном фунте оптимальной кислотности.
Покровную смесь рекомендуется готовить заранее, за 4–5[/SIZE] дней до нанесения на поверхность гряд. Твердые составные части смеси следует просеять и затем тщательно смешать друг с другом для получения однородного состава. Объем материалов для смеси рассчитывают, исходя из площади посева и толщины покровного слоя. Следует учесть также дополнительную норму в пределах 10–15% — на засыпку ямок, образующихся на гряде после сбора грибов.
Непосредственно перед использованием покровный грунт увлажняют, а затем насыпают на поверхность субстрата и распределяют равномерным слоем. Толщина слоя не должна превышать 4 см. Расход грунта на 1 м2 площади составляет 2–3 ведра вместимостью 10 л. Покров должен быть влажным, но не настолько, чтобы это затрудняло укладку. В ее процессе из слоя покровного грунта даже при небольшом его сжатии в компост не должна выделяться вода.
Итак, как только на поверхности гряд появилась паутинка грибницы, необходимо начинать укладывать покровную землю. Позднее нанесение покровного слоя может надолго отодвинуть начало плодообразования шампиньона. После укладки покрова следует постоянно контролировать его влажность. При подсыхании на поверхности грунта может образовываться корка, что очень нежелательно. Это затрудняет воздухообмен между субстратом и окружающей средой и, в конечном итоге, отрицательно сказывается на качестве урожая.
Поливают покровный грунт из лейки с мелким ситечком. При поливе следят за тем, чтобы вода не попадала в компост, так как это может привести к загниванию и последующей гибели грибницы.
После укрытия покровной смесью компоста грибница начинает проникать в грунт отдельными мощными тяжами. Температуру окружающего воздуха в это время поддерживают на уровне 18°С. В последствии на грибных тяжах будут закладываться плодовые тела. Для удаления уже вредного для культуры углекислого газа применяют активное проветривание гряд (в помещении). В случае недостаточной аэрации на поверхности гряд может произойти запушение грибницы в виде отдельных ватообразных комочков. Такое явление сопровождается, как правило, достаточно высокой температурой воздуха (более 20°С). Следствием этого может быть резкое снижение объема урожая. Поэтому, во избежание данной неприятности (при появлении первых признаков запушения грибницы на поверхности гряд), необходимо соблюдать режим достаточно усиленного проветривания и приближать значение температуры к оптимальному. В помещении этого добиваются увлажнением стен и пола. При испарении влаги (от сквозняка) температура воздуха над грядами понижается.
Существует еще один важный прием ухода за культурой шампиньона после нанесения покровного грунта. Примерно через неделю после этого проводят рыхление грунта на всю его глубину. Это необходимо для создания условий лучшего доступа воздуха к субстрату, находящимся под грунтом. Рыхление осуществляют специальным инструментом — гребешком.

[SIZE=10pt]
Приспособление для рыхления грунта: 1 — планка; 2 — гвозди. Гребешок представляет собой деревянную планку длиной 14 см, в которую вколочены в ряд гвозди на расстоянии примерно 3 см друг от друга. Свободные концы гвоздей выступают на 5 см. Подсчитано, что операция рыхления грунта повышает урожайность грибов примерно на 3 кг с 1 м2.
[/SIZE]

[SIZE=10pt]Плодоношение шампиньонов[/SIZE]

[SIZE=10pt]Вскоре после засыпки компоста покровным грунтом появляются первые плодовые тела шампиньонов. Это происходит приблизительно через 2–3 недели. Температура воздуха в этот период не должна превышать 15–18[/SIZE]°С. При более высокой температуре плодообразование затягивается по времени, а если и наступает, то проявляется, как правило, одиночными плодовыми телами

[SIZE=10pt]
Развитие плодового тела шампиньона
[/SIZE]

[SIZE=10pt]Плодоношение грибов протекает волнами в течение 6–8 недель. Появление каждой новой волны происходит обычно через неделю. При температуре воздуха 15–18[/SIZE]°С за первые 4 волны собирают 80% всего урожая.
Шампиньоны нужно собирать осторожно, чтобы не повредить грибницу. Для этого гриб прижимают к грядке и вращают, отрывая от мицелиальных тяжей. Оставшееся углубление засыпают покровной землей.
В период плодоношения для шампиньонов необходимо высокое содержание в окружающей среде кислорода. Если в пространстве остается какое-либо количество углекислого газа, то возможно торможение роста плодовых тел и ухудшение их качества. В этом случае вырастают грибы с тонкими длинными (вытянувшимися в поисках кислорода) ножками и маленькими, быстро раскрывающимися шляпками.

[SIZE=10pt]
Неправильная форма молодого плодоносца шампиньона, сформировавшегося при недостаточной вентиляции
[/SIZE]

[SIZE=10pt]
Культура шампиньона в ящиках
[/SIZE]

[SIZE=10pt]
Культура шампиньона в мешках
[/SIZE]

[SIZE=10pt]Низкая влажность воздуха и его сильное движение над поверхностью гряд (в результате мощного сквозняка или сильных порывов ветра) также ухудшают внешний вид грибов. Кожица на шляпках плодовых тел растрескивается и подсыхает, придавая им неприглядное зрелище.
Шампиньоны очень чувствительны к температуре и влажности среды. Они чрезвычайно не любят их перепадов. Поэтому, чтобы, уберечь уличную культуру от разницы между дневной и ночной температурами, ее укрывают на ночь утепляющим материалом (мешковиной).
В процессе сбора плодовых тел шампиньона необходимо поддерживать высокую влажность покровной земли. Для этого производят ее капельный полив из расчета: сняли 1 кг грибов — полили одним литром воды. При формировании плодовых тел в сухом покровном грунте они не достигают товарных размеров и веса, а поздний полив не спасает положение и приводит к тому, что мякоть их размягчается, сами грибы темнеют и гибнут спустя несколько дней.
Шампиньоны безразличны к свету и плодоносят в полной темноте.
За 2–4
 месяца в зависимости от условий выращивания можно собрать до 10–15[/SIZE] кг грибов с 1 м2. Плодовые тела, как правило, собирают в таком состоянии зрелости, когда пленка с нижней стороны шляпки, закрывающая пластинки, натянута или слегка треснула. Цвет пластинок под пленкой должен быть розовым. Старые перезрелые грибы с фиолетовым или темно-коричневым цветом пластинок в пищу употреблять не рекомендуется. В них накапливаются продукты распада грибной ткани, вредные для организма человека. Эти вещества могут повлиять на работу нервной системы и вызвать расстройство органов пищеварения.
По окраске кожицы шляпки разводимый в искусственной культуре шампиньон делят на 3 вида: белый, коричневый и кремовый. Коричневый и кремовый шампиньоны устойчивы к болезням и более урожайны, но в большей степени зависят от изменений условий окружающей среды (температуры, влажности) по сравнению с белым видом. Каждый вид следует высевать в компост отдельно друг от друга. Смешивание сортов-штаммов может привести к очень плачевным результатам: антагонизму во взаимоотношениях между грибами и возможному взаимоуничтожению.
Экспериментируя с различными штаммами шампиньона можно выбрать наилучший из них, подходящий для выращивания в конкретных условиях.
После окончательного сбора грибов компост можно использовать в качестве удобрения под цветочные, овощные и плодово-ягодные культуры, а также на корм скоту. В нем содержится много азота, фосфора, калия, микроэлементов, жизненно необходимых для роста и развития растений. В результате жизнедеятельности грибов и микроорганизмов в компосте накапливаются биологически активные (ростовые) вещества, обладающие уникальным стимулирующим действием. Сама структура компоста, будучи достаточно рыхлой, улучшает физические свойства почвы, усиливает ее водоудерживающую способность и благоприятно отзывается на протекании воздухообменных процессов в ней.
Помещение, где росли шампиньоны, следует очистить, вымыть, хорошо просушить и проветрить. Использованный компост представляет немалую угрозу последующим поколениям шампиньонов, поскольку может содержать возбудителей болезней и вредителей грибов. Поэтому его необходимо как можно скорее удалить из помещения. Сразу использовать помещение для выращивания следующей культуры шампиньона нельзя. Необходимо соблюсти определенные правила фитосанитарии. Для этого проводят дезинфекцию использованного инвентаря, стен и пола помещения. Инструмент замачивают на некоторое время в растворе хлорной извести (200–400 г извести на 10 л воды), а стены и пол опрыскивают ею.

[SIZE=10pt]Выращивание шампиньонов в открытом грунте с овощами[/SIZE]

[SIZE=10pt]Шампиньоны возможно, выращивать также вместе с капустой, свеклой, огурцами. До посадки, например, капусты в гряде делают ямки глубиной 30 см и шириной 60 см (диаметром). Их набивают компостом. Грибницу шампиньона высаживают на глубину 3–5 см. Способ посадки аналогичен описанному ранее. Грибницу прикрывают покровным грунтом. Вплотную к ямке высаживают рассаду капусты обычным, традиционным методом с таким расчетом, чтобы при ее окучивании не повредить грибницу. Благодаря большой поверхности листьев огородные растения создают благоприятные условия для развития шампиньонов, предохраняя их от излишней влаги и прямых солнечных лучей.[/SIZE]

[SIZE=10pt]Выращивание шампиньонов в городской квартире[/SIZE]

[SIZE=10pt]В квартире выращивают грибы на подготовленном вне ее стен компосте.
Из алюминиевых уголков делают каркас. В этом каркасе располагают один деревянный ящик, либо несколько друг над другом. Ящики опираются на подножки—бруски. Если для культуры используют несколько ящиков, то между ними соблюдают определенное расстояние — 30–50
 см. Под каждый ящик подкладывают противень. Размеры ящиков могут быть 75x50x14 см и 60x50x14 см. В дне ящиков просверливают несколько 15-миллиметровых отверстий (для вентиляции субстрата). Стенки и верх каркаса закрывают прессованным картоном, оставляя переднюю сторону открытой. Ящики набивают компостом, засевают грибницей и прикрывают газетами. Переднюю стенку каркаса закрывают полиэтиленом, но так, чтобы его в любую минуту можно было бы легко снять и обеспечить беспрепятственный доступ к культуре.
Через 15–20[/SIZE] дней культуру в ящиках прикрывают покровной землей. Каркас освобождают от изолирующих материалов. Чтобы обеспечить хорошую аэрацию пространства над ящиками воздух разгоняют при помощи вентилятора.
С одного ящика можно собрать 1,5–2 кг грибов.
Шампиньоны, помимо ценных пищевых качеств, обладают также целым рядом других полезных для человека свойств. Так, в результате испытаний вытяжек из плодовых тел грибов, установлено, что они тормозят рост золотистого стафилококка, возбудителей тифа и паратифа. В вытяжке из шампиньона желтеющего найден антибиотик капестрин, активно действующий против вируса гриппа. Сок, добытый из мякоти шампиньона обыкновенного является великолепным бактерицидным средством. Известно, что при эпидемиях тифа люди, регулярно принимавшие в пищу шампиньоны, избегали этого заболевания. В монгольской народной медицине шампиньон используется при отравлениях, особенно недоброкачественным мясом. Существуют рецепты лечения многих заболеваний в сочетании с другими растениями — кизилом, подорожником, черемухой. Приготавливают преимущественно водные настои и отвары.

 [SIZE=10pt]ИГОРЬ ЮРЬЕВИЧ СТЕНИН[/SIZE]

[SIZE=10pt]НАДЕЖДА ПАВЛОВНА СТЕНИНА[/SIZE]​

[SIZE=18pt]РАЗВЕДЕНИЕ[/SIZE] [SIZE=14.5pt]ГРИБОВ[/SIZE]
[SIZE=10pt]НА ДАЧНОМ УЧАСТКЕ,[/SIZE]​

[SIZE=10pt]В КВАРТИРЕ,[/SIZE]​

[SIZE=10pt]В ГАРАЖЕ[/SIZE]​

[SIZE=10pt]Эта книга предоставляет возможность совершить увлекательное путешествие в загадочный многоликий мир грибов, открывает тайны повседневной жизни грибного организма, его удивительную систему приспособления к жестким условиям окружающей среды, рассказывает о продуцируемых грибной клеткой биологически активных веществах, с успехом применяемых в медицине и в различных отраслях промышленности. На ее страницах приведены технологические приемы, обеспечивающие разведение на огородной грядке или дома таких грибов, как боровик, масленок, шампиньон, боровик, сморчок, вешенка или опенок, остается только выбрать, какой гриб вам больше по душе.[/SIZE]

[SIZE=18pt]ЧТО ТАКОЕ ГРИБЫ[/SIZE]
[SIZE=10pt]Грибы — это обширная группа организмов, насчитывающая в своем составе около 100 тысяч видов. Они занимают отдельное место среди представителей животного и растительного мира. Тем не менее, по способу питания (всасывание, а не заглатывание пищи) они напоминают растения, по наличию в качестве «запасного» продукта — гликогена, а не крахмала — они близки к животным.[/SIZE]

[SIZE=10pt]Грибница видимая и невидимая[/SIZE]

[SIZE=10pt]Между собой грибы различаются внешним видом, местами обитания и физиологическими функциями. Общий их признак определяется наличием одинакового вегетативного тела — грибницы, или мицелия. Грибница представляет собой систему очень тонких, ветвящихся нитей — гиф, находящихся на поверхности питательной среды (субстрате), где живет гриб, либо внутри нее. Самые сложные на первый взгляд грибные ткани состоят из сплетающихся, часто плотно срастающихся нитчатых гиф, причем каждая такая гифа имеет возможность удлиняться самостоятельно лучеобразно. Грибные гифы имеют по диаметру микроскопические размеры. Для измерения микроскопических объектов обычно пользуются измерительной единицей в 0,001 миллиметра, что обозначается греческой буквой μ. Гифы в большинстве случаев имеют величину диаметра от 1 до 10 μ, реже 20 μ и более. Зато в длину гифы достигают иной раз размеров в десятки сантиметров.[/SIZE]

[SIZE=10pt]Развитие грибницы подчиняется некоторой закономерности. Относительно центра, от которого начинается ее жизнь (из споры), грибная ткань располагается кругом. Это хорошо иллюстрирует пример «ведьминых колец», когда плодовыми телами шляпочных грибов образуются более-менее правильные круги на поверхности места, где произрастает грибница. В почве радиальное расположение грибницы проявляется почти беспрепятственно, приблизительно в одной плоскости и на небольшой глубине, обычно всего в несколько сантиметров, так как грибы — организмы, нуждающиеся в воздухе. Исходя из места, куда попала спора или в котором произошло первичное заражение, грибница, простираясь кругами, захватывает участок за участком, доказывая, таким образом, преимущество данного вида перемещения.[/SIZE]

[SIZE=10pt][/SIZE]​

[SIZE=10pt]Развитие грибницы вешенки в чашке Петри, на питательной среде. В центре — кусочек ножки плодового тела.[/SIZE]

[SIZE=10pt]Старые, центральные части грибницы могут отмирать, но гифы, продолжая удлиняться по периферии, спасают положение и продолжают бодрое шествие гриба по новой территории.[/SIZE]

[SIZE=10pt]Как размножаются грибы[/SIZE]

[SIZE=10pt]Грибы, в отличие от растений, размножаются семенами особого вида — спорами. У спор нет ни корешка, ни стебелька, ни семядолей, характерных для семян растений. Спора — это чаще всего одна клетка, которая, прорастая нитевидным ростком, дает начало жизни грибницы. Необходимая для этого энергия извлекается из капельки масла, которое в крошечном количестве присутствует в споре, играя роль запасного элемента питания.
Часто размножение может осуществляться частями грибницы, которые, отделяясь от основной массы грибницы, способны развиваться самостоятельно.
[/SIZE]

[SIZE=10pt]Санитары природы[/SIZE]

[SIZE=10pt]Грибы играют большую роль в круговороте веществ в природе, в разложении останков животных и растений, попадающих в почву, образовании в почве органических веществ, определяющих ее плодородие.
В тканях грибов отсутствует хлорофилл, при помощи которого растения обеспечивают свою жизнедеятельность. При наличии света хлорофилл поглощает и перерабатывает углекислоту воздуха, извлекая из нее необходимый для всех живых организмов углерод. Углерод — это вещество, без которого жизнь любого организма просто немыслима. Его запасы находятся в виде углекислоты в воздухе. Нормальный ход развития жизни на Земле зависит от круговорота углерода, который протекает в следующем порядке.
Зеленые растения, получая углерод из воздуха, развиваются вполне независимо. Травоядные животные используют его в готовом виде, питаясь растениями. Хищники, в свою очередь, питаясь травоядными, получают готовый продукт от них. Люди, как всеядные существа, получают углерод от зеленых растений и от животных. Травоядные, хищники и всеядные, таким образом, считаются категорией организмов, существующих за счет других живых форм. Однако при таких условиях естественно предположить, что запас углерода в воздухе, в конце концов, истощится, и течение жизни прекратится. Небольшой корректировкой к такому мрачному прогнозу, правда, является то обстоятельство, что накопленный в телах живых организмов углерод отчасти сгорает и выделяется в воздух в процессе их дыхания. Подобному возврату подлежит только небольшая часть углерода, тогда как большее количество остается в растительных и животных тканях в виде разнообразных органических соединений, составляя главную массу тела живых существ. По окончании жизненного пути накопленный в тканях углерод непроизводительно выбрасывается из оборота. Так можно отметить, что каменный уголь, добываемый из недр земли, есть не что иное, как запас углеродистых соединений в тканях первобытных растений, когда-то покрывавших поверхность земли. Чрезмерное накопление углеродистых останков являлось бы, несомненно, угрозой для продолжения жизни, не будь существования ряда бесхлорофилльных организмов, специально приспособленных природой на добычу углерода из готовых органических соединений. Выбирая в качестве питательной среды отмершие ткани, они способствуют их скорейшему разложению. Грибы, конечно, возглавляют отряд этих своеобразных санитаров и вместе с ними довершают круговорот углерода.
[/SIZE]

[SIZE=10pt]Строение грибов[/SIZE]

[SIZE=10pt]У грибов вегетативные органы — гифы являются довольно однородными по своему строению. Существенным признаком, делящим грибы на две категории — низшую и высшую, считается наличие или отсутствие в гифах специальных образований — перегородок. Часто грибница сильно разрастается и обильно разветвляется, но перегородок в ней нет и она, несмотря на значительные размеры, всегда остается одноклеточной. В других же случаях уже с самого начала своего развития грибница проявляет стремление к образованию поперечных перегородок, выявляя тем самым свою многоклеточность.
Грибы, стоящие на низшей ступени развития, в подавляющем большинстве случаев имеют всегда одноклеточную грибницу, тогда как грибы с более сложной организацией — многоклеточную. Из низших грибов наиболее известными представителями выступают различные амебоиды и некоторые виды дрожжей. Из высших — это грибы, образующие более-менее видимые и весомые плодовые тела, включающие съедобные и несъедобные виды (белый гриб, рыжик, мухомор и т.п.), а также некоторые микроскопические грибы.
Строение плодовых тел высших шляпочных грибов довольно загадочно и интересно, поэтому остановимся на нем подробней.
У многих видов в самом начале развития плодовое тело закрыто общим покрывалом, наподобие чехла. По мере роста плодового тела покрывало разрывается, его остатки сохраняются у основания ножки и на шляпке в виде разбросанных по ее поверхности хлопьев. Существует еще один вид покрывала — так называемое частное покрывало. Оно образуется срастанием гиф шляпки и ножки и соединяет собой край шляпки с верхней третью ножки. Частное покрывало также подвергается разрушению при развитии плодового тела и напоминает о себе либо кольцом па ножке (у опенка, у кольцевика), либо отдельными волокнами, свивающими подобно паутине с края шляпки. Кстати, последний признак особенно характерен для грибов-паутинников (паутинника красного, паутинника фиолетового), что позволило дать им такое название.
Шляпка грибов служит весьма определенной цели: на ней располагается слой с созревающими спорами, и, естественно, ей приходится защищать его от неблагоприятных воздействий извне собственной более-менее мясистой тканью. Кроме того, ее мякоть является специальным «резервуаром» воды, которую использует спороносный слой в процессе отстрела спор. Покров шляпки состоит из сплошного слоя кутикулы — кожицы, которая часто разрывается на протяжении развития гриба и остается в виде сети чешуек. Кутикула исполняет функцию защиты плодового тела от отрицательных факторов (например, избытка испарения), а также от возможных механических повреждений.
Мякоть шляпки состоит из двух видов тканей — основной и соединительной. Основная ткань образуется толстостенными гифами, а соединительная — более тонкими и изогнутыми. Кроме основной и соединительной ткани шляпки некоторых видов содержат гифы так называемой проводящей системы. Например, у рыжика имеются сосудистые гифы, содержащие млечный сок оранжево-желтого цвета, у млечника наблюдаются такие же гифы с белым содержимым, у волнушки, серушки, груздя картина аналогична, и все они объединяются по этому признаку в группу «плачущих» грибов, слезы которым заменяют выделения сока разноцветной окраски.
Основу плодовых тел шляпочных грибов составляют вегетативные гифы, которые делятся на генеративные и скелетные. Генеративные гифы дают начало скелетным, они, как правило, тонкостенные, ветвящиеся. Скелетные гифы придают прочность плодовому телу, они толстостенные и, чаще всего, довольно прямые.
[/SIZE]

[SIZE=10pt][/SIZE]​

[SIZE=10pt]Типы спороносного слоя грибов (нижней стороны шляпки): а — трубчатый; 6 — пластинчатый; в—гладкий; г — шиловидный.[/SIZE]

[SIZE=10pt]Нижняя сторона шляпки плодовых тел, как указывалось выше, является местом сосредоточения спор, а также специальных выростов, в которых они созревают. По форме она бывает трубчатой и пластинчатой, а также шиповатой.
Трубчатая форма включает в себя наличие специальных ячеек, схожих по внешнему виду с трубочками. Наиболее характерна для белых грибов, моховиков, подберезовика, подосиновика.
Пластинчатая форма именуется так из-за ячеек, имеющих вид пластинок. Этой формой одарены такие грибы, как опенок, вешенка, навозник, сыроежка и многие другие виды.
Шиповатой форме свойственны особые сосочки или шипики. Ею пользуются, в основном, грибы-дождевики. Трубочки, пластинки и шипики обеспечивают защиту споровым выростам и самим спорам в процессе их созревания.
[/SIZE]

[SIZE=10pt]Как грибы покоряют пространство[/SIZE]

[SIZE=10pt]Созревшие споры катапультируются с поверхности шляпки при помощи специального механизма. Однако длина прыжка довольно невелика и позволяет им выбраться только наружу, за пределы спороносного слоя. Тут они подхватываются воздушными течениями, образующимися из- за разницы температур между шляпкой гриба и окружающей воздушной средой. В отличие от ветра или сквозняка это особые, так называемые «температурные течения», совершенно неосязаемые для человека и даже для специальных приборов. Они имеют направление снизу вверх, вертикально, обеспечивая перенос спор от шляпки гриба к тем слоям воздуха, где уже проявляется действие ветра и сквозных течений. При таком способе освобождения спор, шляпке необходимо соблюдать определенную форму расположения по отношению к земле. Особенно это касается грибов с трубчатой поверхностью, поскольку споры из просвета трубочек должны выпасть за пределы плодового тела, что возможно только при строго вертикальной ориентации шляпки. Это требование соблюдается грибами неукоснительно, и здесь уместно привести следующий характерный пример. Мухомор, сорванный в лесу и положенный на стол, в темноте продолжает расти, но ножка его изгибается так, что шляпка снова принимает вертикальную ориентацию по отношению к поверхности стола.
У дереворазрушающих грибов плодовые тела развиваются на нижней поверхности валежных стволов, обращенной к земле. При перемене положения ствола начинает образовываться новое плодовое тело на той стороне, которая обращена к земле.
Основным условием удачного рассеивания спор является их массовое образование. Обилие спор у большинства грибов настолько велико, что часто приближается к астрономическим цифрам. Если взять шляпку обыкновенного зрелого шампиньона и, отрезав ножку, положить ее плашмя на кусок белой бумаги, то через несколько часов можно будет наблюдать на этой бумаге черно-фиолетовую массу спор. Их количество было подсчитано и оказалось равным в среднем около 40 миллионам штук. Если продолжить данный эксперимент в течение пары суток, то спор на бумаге может накопиться до 80 миллионов. Навозный гриб копринус образует за час существования своего плодового тела 100 миллионов спор, а за 5 часов — более 5 миллиардов! Дождевики средних размеров производят 7 биллионов спор! Ввиду такой мощности аппарата спорообразования, совершенно потрясающей воображение, возникает вопрос, почему природа, обычно нерасточительная, оказалась в данном случае столь щедрой и допустила, на первый взгляд, непроизводительный расход органического вещества? При том огромном количестве спор, которые носятся в воздухе,
можно было бы ожидать полного засилия грибных организмов, своего рода грибного беспредела. Но дело в том, что существует определенный количественный отбор, в результате которого далеко не все споры, а только незначительная их часть попадает на благоприятную почву и имеет возможность прорастать.
Количество спор, доходящих до стадии прорастания и дающих жизнь новому поколению, исчисляется долями процента. Намного в лучшем положении, конечно, оказываются всеядные грибы — пенициллы, аспергиллы, которые в состоянии использовать для своего развития практически любой субстрат, начиная от пластмасс и заканчивая недопитым, оставленным в кружке чаем.
Более развитые формы грибных организмов имеют более узкую специализацию, вследствие чего вынуждены долго блуждать в поисках подходящего субстрата, и не всегда такие поиски заканчиваются успехом. Только массовое освоение спорами воздушного пространства, в результате которого происходит более-менее значительное распределение их на поверхности разнообразных субстратов, спасает, в какой-то мере, положение и противодействует различного рода случайностям.
В распределении грибных спор играют весьма важную роль атмосферные осадки. Наибольшее число спор наблюдается в сухую погоду, и чем дольше продолжается засуха, тем более засоряется воздух. Но если начинают выпадать осадки, то количество спор, как и атмосферной пыли, значительно уменьшается. После нескольких дней непрерывных дождей при тихой погоде встречаются редкие одиночные споры. Таким образом, дождь очищает воздух. Если дождь сопровождается ветром, то спор в воздухе оказывается больше, поскольку, очевидно, они заносятся издалека.
Распределение грибных спор может также происходить при содействии животных организмов. В этом процессе принимают участие самые разнообразные представите-
ли животного мира, от простейших до высших млекопитающих. Особо деятельными в этом отношении являются насекомые. Споры могут переноситься как снаружи, так и внутри организма своих спутников. В первом случае они просто приклеиваются (щетинки, пух, перья, слизистая оболочка, волоски и т.п.). Во втором случае споры, попадая вместе с поедаемым грибом внутрь, проходят неповрежденными и невредимыми через пищеварительный тракт животных. Оболочка спор, состоящая из особой разновидности устойчивой клетчатки, не поддается влиянию кислот, находящихся в пищеварительных органах.
Некоторым грибам свойственны довольно нетрадиционные методы распространения спор. Например, у гриба-дождевика споры запрятаны до поры до времени в закрытом плодовом теле. К моменту их созревания, наверху плодового тела открывается отверстие и при малейшем сотрясении из него вылетает коричневое пылеобразное облачко. Чем дольше будет сотрясаться почва, на которой находится гриб (от поступи проходящих мимо животных) тем больше из него вылетит спор.
Порховка чернеющая, или заячья картошка, характеризуется тем, что ее зрелое плодовое тело отрывается от корневидного грибного тяжа и совершенно свободно переносится ветром с одного места на другое — «порхает». При этом споры разлетаются в разные стороны. Облегчает передвижение гриба то, что его форма напоминает колобок, которому по плечу преодолеть любое расстояние.
Гриб копринус, или навозник, отличается очень малым сроком жизни. Его плодовое тело существует у мелких видов всего несколько часов, у более крупных — около 48 часов. Спустя это время плодовое тело самоуничтожается прямо на глазах: шляпка гриба чернеет и расплывается, превращаясь в черную жидкую массу, содержащую многочисленные споры. Такое явление называется автолизом, то есть разложением собственной ткани. Поскольку у многих копринусов шляпка колокольчатая, продолговатая, то выпадение спор было бы затруднено без автолиза (из-за нераскрытого спороносящего слоя). Созревание спор происходит не одновременно во всей шляпке, а последовательно снизу вверх. Поэтому автолиз настигает не сразу всю мякоть шляпки, а поочередно слой за слоем, снизу вверх. По мере опадения спор край шляпки оплывает и не мешает опаданию досозревающих вышележащих спор.
[/SIZE]

[SIZE=10pt]Стадии развития грибницы[/SIZE]

[SIZE=10pt]Грибница ввиду своего строения является особо чувствительной ко всякого рода внешним влияниям окружающей среды и плохо переносит любые крайности. В особенности это относится к молодой, бесцветной грибнице, каковой она представляется на первых порах своего существования. Поэтому, природа естественно стремилась к тому, чтобы, так или иначе, предохранить ее от вредных условий.
Наиболее существенной охраной является покров из тканей субстрата. Большинство грибов обитает внутри тканей заселенных ими субстратов, и на поверхность их грибница выступает только в фазе плодоношения в виде плодоносцев, наделенных функцией свободного рассеивания спор. В качестве примера можно обратиться к многим видам трутовиков, паразитирующих на деревьях. Их копытообразные плодовые тела выступают в виде наростов на стволах, но грибница, на которой развиваются эти плодовые тела, находится в толще древесины и живет там много десятков лет. Она, несомненно, была бы обречена на гибель в зимнее время, так как не смогла бы выдержать морозов. Но, находясь под прикрытием коры и слоя древесины, она без всякого вреда переносит в состоянии оцепенения низкие температуры в 20–30
° С и более градусов ниже нуля. Лишь только наступает оттепель, как
она уже снова оживает. Этот способ предохранения грибницы играет в жизни гриба важную роль. Однако существуют независимо от него и другие приспособления защиты, направленные уже к усилению устойчивости самой грибной ткани. Они состоят, в основном, в следующем. Молодой росток и образующаяся из него гифа в первое время имеют бесцветную, тонкую оболочку, состоящую из клетчатки. Такая оболочка очень нежна и хрупка. Но постепенно происходит ее утолщение, причем при этом она пропитывается (инкрустируется) более устойчивыми веществами (пигментами и смолами). В некоторых случаях оболочка сохраняет свою прозрачность, оставаясь бесцветной, но по большей части она окрашивается в различные цвета, принимая черную или коричневую окраску.[/SIZE]

[SIZE=10pt]Однако, несмотря на все эти предосторожности, жизнедеятельность грибницы подвергается многим испытаниям, которые не всегда успешно ею преодолеваются. Одинаково вредными для нее являются чрезмерная засуха, избыток влажности, слишком высокая или слишком низкая температура. Каждый отдельный вид имеет свои определенные требования в этом отношении и развивается нормально только при особых условиях. При этом амплитуда колебаний, в пределах которых конкретный вид грибов в состоянии проявлять свою жизнедеятельность, различна опять же в зависимости от вида. Существуют некоторые средние значения внешних факторов, определяющие развитие жизненных функций, и которые более-менее соответствуют большинству видов грибов. Например, самая минимальная температура окружающей среды соответствует 4–6° С, оптимальная — 16–25[/SIZE]° С, и самая высокая — 30–35° С. При оптимальном значении температуры грибница получает возможность как для благоприятного, стабильного развития, так и для перехода в фазу размножения (плодоношения). По мере опускания к минимуму или поднятия к максимуму, жизнедеятельность постепенно замедляется, некоторые функции, в первую очередь воспроизводящие, прекращаются, а сами вегетативные органы (грибница) переходят в состояние оцепенения, которое продолжается до тех пор, пока снова не установится температура более близкая к оптимуму.
Гибкость грибного организма очень велика и состояние оцепенения может продолжаться даже в том случае, если температура понижается за минимальное значение. Гораздо опасней превышение значения температуры выше максимальной отметки. Многое здесь зависит от продолжительности пребывания гриба за пределами свойственной ему амплитуды температуры. Краткое охлаждение или небольшое перегревание может пройти совершенно бесследно, но более длительное пребывание за установленными нормами оказывается губительным и оцепенение заканчивается смертью.
В отношении влажности существуют также пределы, причем избыток не менее опасен, чем недостаток. Засуха убийственна для грибов, в особенности, если она продолжительна.
Сравнительная чувствительность грибов к условиям окружающей среды объясняется главным образом тем, что их обычные вегетативные органы, то есть грибница, содержит определенное количество воды, часто очень значительное (80–90%). Такое положение создает угрозу для сохранения грибов как вида, так как нет гарантии, что экологическая обстановка, создающая оптимальные пределы, будет все время постоянной. Поэтому чрезвычайно важно, чтобы организмы имели возможность адекватно реагировать при наступлении неблагоприятных для существования условий. У грибов такая возможность реализуется в способности создавать покоящиеся стадии грибницы, что позволяет избежать им гибели. Пребывая в данной стадии, грибница как бы впадает в спячку, не отзываясь на отрицательные изменения окружающих условий даже в том случае, если они превышают максимально и минимально возможные. Это состояние обусловливается тем, что часть грибницы, предназначенная для пережидания периода покоя, выделяет воду и остается, проще говоря, в засушенном виде, чем чувствительность самой грибной ткани доводится до минимума. Поскольку спячка может продолжаться довольно долго, то этим достигается не только защита от вредного влияния среды, но и более или менее значительное удлинение общей продолжительности жизни.

[SIZE=10pt]Покоящиеся стадии грибницы[/SIZE]

[SIZE=10pt]Среди типов покоящихся стадий грибницы можно выделить две, наиболее характерные для большинства видов грибов. Первый тип — это ризоморфы.
Ризоморфы представляют собой образование в виде шнуров. Ветвистые сети из этих шнуров можно увидеть в почве, на корнях и нижней части стволов деревьев, между корой и древесиной. Наиболее известны и изучены ризоморфы у опенка. Они достигают иной раз значительных размеров в несколько метров длиной. Сделав поперечный срез шнура можно увидеть, что он состоит из плотной коричневой или черной оболочки мертвых клеток и из белой сердцевины с живыми гифами, заполненными большим количеством жира. Жир, являясь высококалорийным запасным продуктом, скрашивает грибнице довольно убогий образ жизни во время переживания стадии покоя. Оболочка ризоморф достаточно стойка и непроницаема, вследствие чего ни минусовая температура, ни засуха не могут добраться до живых грибных клеток и повредить их. Карантин будет продолжаться до тех пор, пока природные катаклизмы не сойдут на нет и не наступит некоторое смягчение условий окружающей среды. Тогда из концов ветвей ризоморф начнут выползать на свет первые гифы-разведчики, проверяя на ощупь снизошедшее благоденствие. В случае удовлетворительного результата начнется массовое образование уже нормального вида сплетений гиф, и жизнь грибного организма вновь забьет ключом.
Второй тип покоящейся стадии грибницы — это наиболее законченная и совершенная ее форма — склероций. В склероции уплотнение грибных гиф настолько велико, что получается довольно твердое тело различной формы и объема. Снаружи оно покрыто окрашенной, пропитанной различными веществами оболочкой, внутри содержит бесцветное образование живых гиф, клетки которых заполнены жиром.
Очевидно, что особой разницы в строении у ризоморф и склероциев нет. Отличие состоит в том, что у ризоморф сохранилось нитчатое расположение гиф, вследствие чего они представляют собой шнуровидное образование. Склероции же чаще всего имеют форму рожка, шарика или подушки.
Развитие склероция можно проследить на примере поражения низшими грибами семечковых плодовых деревьев, влекущее за собой появление так называемой плодовой гнили. Причем образование склероция может иметь две разновидности. К первой относится склероций, состоящий исключительно из грибных гиф (он сопутствует загниванию листьев и плодов растений). Ко второй разновидности можно отнести склероций, образующийся не только при участии грибницы, но и в той или иной части ткани субстрата. При этом какой-либо плод, например яблоко, принимает черную окраску и кажется будто лакированным. Это происходит оттого, что гриб не входит в стадию плодоношения, а «консервирует» ткань плода для поддержания своей жизнедеятельности в течение периода покоящейся стадии. Если сделать разрез пораженного яблока, то окажется, что вся ткань плода пронизана гифами грибницы, причем клетки субстрата (яблока) несколько съеживаются, теряя воду и ссыхаются (мумифицируются), приобретая способность сохраняться некоторое время не загнивая (до2–3
 лет). В этом случае мумии-плода, преобладающая масса склероция состоит из мякоти. Однако все зависит от расположения склероция по отношению к субстрату. Если клубок гиф образуется вне тканей субстрата или в его пустотах, то преимущество в объеме остается за грибной тканью.
При необыкновенно быстром росте клубков грибницы, превращающихся в склероции, бывает, что в них включаются посторонние предметы. Так, объемистые склероции некоторых трутовиков, достигающие диаметра 20–30[/SIZE] см и образующиеся в почве у корней деревьев, нередко в своем бурном росте захватывают комки земли, камни, ветви, сухие листья.
Иной раз склероции проявляют интересное свойство мимикрии, то есть внешнего сходства с другими предметами. Наиболее любопытный случай этого наблюдается у низшего гриба склеротиум-семен. Он очень часто встречается в большом количестве на кочанах капусты, хранящихся в подвалах в виде небольших шариков диаметром 1–2 мм. Цвет шариков сначала желтоватый, затем со временем темно-коричневый. В созревшем состоянии склероции и по форме и по цвету напоминают семена капусты, и в связи с этим бывают случаи, когда огородники их усердно собирают и засевают ими парники, рассчитывая получить капустную рассаду. Настоящую природу этих склероциев нетрудно выявить на срезах, когда обнаруживается белая, однородная сердцевина.
Другой случай мимикрии встречается у тех склероциев, которые ютятся в ягодах черники. Пораженные ягоды не чернеют как здоровые, нормальные, а становятся беловато-зеленоватыми. В природе существует разновидность черники с белыми ягодами, цвет которых обусловлен отсутствием пигментации. Это явление так называемого наследственного альбинизма. Отличить белые ягоды черники от склероциев можно уже потому, что они сочны, тогда как превращенные в мумии пораженные ягоды сухие. Подобные же случаи наследственного альбинизма обнаружены на бруснике, клюкве и голубике, которые также поражаются своими видами склероциев.
Склероции развиваются на поверхности или внутри различных органов растений, начиная от корней и корневищ, стеблей, ветвей и листьев и кончая цветами, плодами, ягодами и семенами. Прорастают склероции, то есть пробуждаются к жизни, после некоторого периода покоя, когда окружающие условия среды становятся благоприятными для жизнедеятельности гриба. В этом случае, если массой склероция накоплено оптимальное количество питательных веществ, из нее последовательно развивается плодоношение. При росте плодовых тел склероций подвергается частичному или полному распаду. Например, при образовании плодоносцев навозников-копринусов склероций полностью исчезает за 7–9дней, отдавая все свое содержимое растущим тканям.
Как было уже отмечено раньше, отличительной чертой грибницы является ее верхушечный рост. Разрастание в двух или трех плоскостях наблюдается в виде исключения у некоторых спор, из которых непосредственно развиваются так называемые плодовместилища (у редких видов низших грибов), но у грибницы оно, как правило, не встречается. Поэтому не приходится говорить о наличии у грибов такого вида ткани, как паренхима, столь характерной и распространенной у растений. Такая ткань у грибов вообще не существует. Тем не менее, хорошо известно, что плодовые тела шляпочных грибов достигают больших размеров и представляются довольно сложными по своему строению. Однако, как бы ни были разнообразны по форме и внушительны по размерам эти плодоносцы, все они неизменно состоят исключительно из нитчатых гиф.

[SIZE=18pt]ТКАНИ ГРИБОВ И ИХ ФУНКЦИИ[/SIZE]
[SIZE=10pt]Несмотря на то, что грибы по своему происхождению непосредственно примыкают к простейшим существам и стоят на более низкой ступени развития по сравнению с животными и растительными организмами, все же в пределах вида эволюция проявилась в достаточно широкой мере. Жизнь низшего организма ограничена во времени и несложна по своим функциям. Она поддерживается благодаря способности вида быстро и неограниченно размножаться, сохраняя количественное превосходство. Это довольно примитивный способ самозащиты, не требующий какого-то самосовершенствования. По мере усложнения организма, естественно, что индивидуальная жизнь приобретает все большую ценность. Такой курс эволюции и привел грибы к их теперешнему состоянию. У стоящих на нижней ступени развития одна клетка выполняет все функции, напрягая все усилия на размножение. Но постепенно начинается деление на вегетативные части (грибница) и на органы размножения. Затем происходит деление вегетативных органов. В дальнейшем идет развитие различных стадий грибницы, предназначенных для определенных целей (покоящиеся стадии) и усложнение плодовых тел в целях лучшего их предохранения как органов размножения от вредных воздействий внешней среды. Все это, наконец, в конечном итоге приводит к образованию грибных тканей, физиологически приспособленных к определенным функциям и потому отличающихся рядом признаков.
Происхождение грибных тканей может быть двояким: первый случай, нормальный, присущий всем грибным организмам, — это развитие из гифы. Гифы, переплетаясь, образуют пучки, которые дают развитие шнуровой ткани. Второй способ — это образование клубочков. В каком-нибудь месте на своем протяжении гифа дает большее или меньшее количество боковых ветвей, которые сплетаются в клубок (как, например, при образовании склероция). При срастании гиф или при образовании клубочков получается более-менее плотная ткань. Такая ткань у грибов по характеру выполнения функций делится на несколько типов.
[/SIZE]

[SIZE=10pt]Покровная, или защитная, ткань[/SIZE]

[SIZE=10pt]Она служит для защиты всех остальных тканей от внешних воздействий и является одной из наиболее резко выраженных у грибов. Состоит из ярко-окрашенных, плотно переплетенных гиф.
Покровная ткань хорошо развита на верхней поверхности шляпочных грибов, таких как, например, сыроежек или мухомора, она выглядит пленкой, легко отделяющейся от шляпки, наподобие эпидермы листа растений.
Оболочка ризоморф или склероциев, состоящая из одного или нескольких слоев омертвелых клеток, тоже характерный пример покровной ткани.
Очень часто покровные части представляются весьма плотными с одеревеневшими клетками с утолщенной оболочкой, как то можно увидеть у некоторых трутовиков. Поверхность покровной ткани может быть гладкой и голой, покрытой различными образованиями. У трюфелей, например, наблюдаются бугорки или бородавки, у рыжиков — студенистый налет, у чешуйчатки — сети чешуек, у ряда видов — сплетение волосков, образующих сплошной войлочный покров.
[/SIZE]

[SIZE=10pt]Органы питания[/SIZE]

[SIZE=10pt]Грибы «принимают пищу» исключительно в форме раствора, проникающего в грибную клетку через оболочку. Питательный раствор поглощается всей поверхностью грибницы, находящейся с ним в соприкосновении.
Нередко случается так, что грибница распределяется как внутри субстрата, так и на его поверхности (воздушная грибница). Функция питания выпадает на долю той части грибницы, которая находится внутри субстрата, в непосредственном контакте с питательными соками. Однако никакого ущемления «прав» воздушной грибницы в данном случае не происходит, и она исправно получает свой «паек», а при прикрытии ее субстратом также станет хорошо усваивать растворы, как и погруженные с самого начала части.
Когда мы говорим о всасывающей ткани, имеются в виду только деятельные части вегетативных органов, то есть нормальная грибница. Что же касается покоящихся стадий, то у них всасывающая способность не проявляется и при пробуждении в жизнь дальнейшее развитие протекает за счет накопленных у них питательных веществ в форме белков и особенно жиров.
[/SIZE]

[SIZE=10pt]Проводящая ткань[/SIZE]

[SIZE=10pt]Как правило, специальной проводящей ткани у грибов не существует, и питательные соки у большинства видов распределяются всасыванием или через соединительные отверстия смежных клеток по всем вегетативным и репродуктивным тканям. Проводящая способность грибных гиф очень велика, и соки циркулируют в них без задержки. Например, у белого гриба, у подосиновика питательные вещества переносятся внутриклеточной жидкостью при температуре 20°С за 1 час на 10–12 см. Такая скорость зависит от повышенного испарения и очень скоро надает при повышении влажности воздуха, при котором испарение снижается.
Иногда у некоторых видов можно выявить более сложное и целесообразное устройство, состоящее из сплетения гиф и предназначенное для возможно быстрого и обильного переноса, главным образом, воды. Такая специальная организация проводящей ткани, напоминающая собой систему сосудистых пучков у высших растений, присуща, например, домовому грибу, который вызывает разрушение древесины в постройках не только нижних этажей, где количество влаги вполне обеспечено, но также в верхних этажах. Гриб использует все закоулки данного здания благодаря разветвленной сети шнуроподобных гиф. Гифы способны проводить воду в избытке на какое угодно расстояние и поднимаются в постройках из подвалов до крыш, даже по косякам дверей и окон, отчасти по стенам, всюду пронося с собой воду.[/SIZE]

[SIZE=10pt]Запасные ткани[/SIZE]

[SIZE=10pt]Эти ткани играют существенную роль у грибов. Они обеспечивают их беспрепятственное дальнейшее развитие при прекращении питания извне. Здесь необходимо отметить, что речь идет не столько о специальных тканях, сколько о частях организма, в которых сосредотачиваются запасные материалы для своевременного использования. Основными запасными элементами грибов являются жировые вещества в виде масел и углеводов, заменяющих собой крахмал (широко распространенный у растений). Кроме того, используется и гликоген, который характерен как запасное вещество в животных организмах. Грибы, как и животные, вполне могут его синтезировать. Во всех органах грибов, мобилизованных исполнять обязанности запасных тканей, можно находить тот или иной из названных элементов, либо все вместе.
Классическим примером запасной ткани могут служить споры, если трактовать этот термин в данном случае в широком значении этого слова. Споры физиологически заменяют семена высших растений и подобно им должны быть снабжены запасными веществами. Разложение этих веществ на питательные продукты обеспечивает начальный период роста гифы, происходящей из споры. Если рассмотреть спору под микроскопом, то всегда можно обнаружить в ней некоторое количество масла в виде преломляющих свет шаровидных капель.
Не менее типичными запасными элементами являются покоящиеся стадии грибницы-склероции. Запасную ткань в них представляет сердцевина, а клетки оболочки составляют покровную защитную ткань.
К запасной ткани можно также отнести сумки у сумчатых грибов. При образовании в них спор, они оказываются заполненными гликогеном. Гликоген используется созревающими спорами и после их готовности исчезает из сумок, будучи полностью употребленным.
[/SIZE]

[SIZE=10pt]Механическая ткань[/SIZE]

[SIZE=10pt]Под этим названием подразумевается та часть или части организма, которые придают ему необходимую прочность и фиксируют его форму. У высших растений механическая ткань складывается из клеток с утолщенными стенками, так называемых склеренхимных клеток. Эти клетки располагаются не как попало, а по определенной закономерности в целях достижения наибольшего результата при наименьшей затрате материала.
Склеренхимноподобные клетки с утолщенной оболочкой можно встретить в шнурах домового гриба.
Наибольшего развития механическая ткань достигает в плодовых телах высших грибов. Причем у одних видов склеренхимное строение ножки приводит к одеревенению ткани, как, например, у гриба подаксиса пестичного, распространенного в сухих степях. В других случаях не всегда можно наблюдать утолщение клеточных стенок в ножке. 
Необходимое сопротивление излому достигается за счет волокнистого строения параллельно расположенных гиф, естественно более устойчивых в горизонтальном, чем в продольном направлении, в котором они легко расщепляются. Само собой разумеется, что сопротивление будет находиться в зависимости от диаметра ножки, и мы видим, что при подобном строении ножки бывают очень толстыми, как, например, у подосиновика или у белого гриба. Это вызывает необходимость расточительного пользования органическим веществом. Однако нередко встречается более экономичный и целесообразный тип построения ножки — в виде полой трубочки. Принцип здесь тот же, что и применяемый в механике при постройке мостов или других сооружений из полых металлических частей. В этом случае затраты органического вещества малы, а между тем сопротивление излому довольно велико в силу определенной эластичности, что не требует чрезмерного утолщения клеточных стенок. Наличие пустой полости в ножке характерно для многих шляпочных грибов.
Оригинальное приспособление механической ткани бывает у видов, основное распространение спор которых ориентировано на насекомых. Задача, следовательно, состоит в том, чтобы облегчить насекомым доступ к спороносному слою плодового тела, издающего во время созревания трупных запах, что, как известно, является приманкой для некоторых видов насекомых. Плодовое тело представляется в виде яйца, находящегося на поверхности почвы или в ее верхних слоях. Ко времени созревания верхняя часть оболочки лопается и из нее сравнительно быстро выступает удлиненная ножка в 10–25
 см длиной, на вершине которой располагается спороносная ткань. На удлинение ножки требуется около 36 часов, после чего начинается постепенное ослизнение шляпки и происходит разложение плодового тела. В этом процессе главную роль играет не столько рост гиф, сколько их необыкновенная растяжимость.[/SIZE]

[SIZE=10pt]Выделительная, или выводная, ткань[/SIZE]

[SIZE=10pt]Она довольно широко распространена у грибов. Гифы многих видов выделяют на своей поверхности смолистые вещества, кристаллы щавелевокислой извести. Плотный сплошной налет извести наблюдается на протяжении гиф грибницы шампиньона. Выделение извести зависит от индивидуальных особенностей, а также от условий питания, но, как правило, оно имеет место преимущественно в молодом возрасте, что объясняется более деятельным обменом веществ.
Грибы имеют фактически настоящие выводные, или выделительные, ткани, которые в достаточной степени разделены. Прежде всего, следует остановиться на млечных сосудах, присущих, например рыжику. Рассматривая внимательно плодовое тело рыжика, нетрудно заметить, что ткани ножки и шляпки не однородны, а довольно резко отличаются. Основная масса состоит из тонких цилиндрических гиф, образующих у периферии сплошной слой. В середине шляпки и ножки в эту основную ткань вклиниваются скопления клеток с утолщенными стенками. На разрезе они образуют овальные или округлые островки в виде розетки, в центре которой располагается тонкая гифа, заполненная водянистым содержимым. В нитчатой ткани, на границе с утолщенными клетками, и находятся млечные сосуды. У них более значительные размеры, они имеют растяжимые стенки, часто сплетающиеся в букву Н. Сосуды пронизывают все плодовое тело. Содержимое млечного сока составляет сложный химический комплекс из красящих веществ (пигментов), из смол и жиров. Встречаются также белки, гликоген. Окраска сока бывает различной — красная, молочно-белая, зеленая, иногда изменяющаяся в присутствии воздуха от окисления.
[/SIZE]

[SIZE=10pt]Ассимиляционная ткань[/SIZE]

[SIZE=10pt]У грибов она отсутствует, так как, не обладая хлорофиллом, они не в состоянии ассимилировать углекислоту из воздуха. Поскольку у грибов не имеется ни устьиц, ни воздушных камер, столь характерных для высших растений, то не приходится говорить и о наличии каких-либо специальных дыхательных грибных тканей. Но, тем не менее, даже в самых плотных тканях, какими являются склероции и ризоморфы, всегда имеются промежутки, через которые внутренние ткани входят в непосредственное соприкосновение с окружающим воздухом, проникающим свободно между сплетениями гиф.
Процесс дыхания, то есть поглощения кислорода и выделения углекислоты, производится всей поверхностью живой гифы.
Как можно видеть из вышеприведенного изложения, функции грибных тканей не так резко разграничены, как-то имеет место у высших растений, у которых такое деление пошло дальше. Часто одни и те же гифы исполняют несколько функций, что обусловливает большую гибкость грибов в приспособлении к условиям окружающей среды.
[/SIZE]

[SIZE=18pt]ХИМИЧЕСКИЙ СОСТАВ ГРИБОВ[/SIZE]
[SIZE=10pt]Если подвергнуть плодовое тело либо грибницу любого гриба полному сгоранию, то неизбежно получается твердый остаток — зола и некоторое количество газообразных веществ: углерода, кислорода, водорода и азота. Газообразные вещества представляют собой продукты окисления (разложения) органических соединений. В грибных тканях, таким образом, имеются неорганические минеральные составы и органические, которые состоят из четырех вышеназванных элементов в различных комбинациях.
Отличительной чертой грибов является значительное содержание в них воды. Количество воды достигает до 90% общего веса грибной ткани. Это объясняет ту картину, когда при высушивании плодовых тел они значительно теряют прежнюю форму, съеживаются, уменьшаются в размерах. Что представляет собой сухой остаток, видно из следующей таблицы.
[/SIZE]

[SIZE=10pt]Химический состав сухого остатка (в % от общего сухого веса)[/SIZE]

[SIZE=10pt]Белок 20–24[/SIZE]
[SIZE=10pt]Липиды (сырой жир) 18–20
Глюкоза, маннит 17–30[/SIZE]
Целлюлоза 20–27
Лигнин 2–36
Хитин, фунгин 3

[SIZE=10pt]Белки[/SIZE]

[SIZE=10pt]Белковые вещества придают особую ценность грибам как пищевому продукту. Однако важным недостатком следует признать то обстоятельство, что у грибов имеется также много клетчатки (лигнин и целлюлоза) и хитина (вещества, встречающегося в клеточной оболочке различных насекомых, пауков, ракообразных и придающему их покровам большую устойчивость), вследствие чего людям с пониженной функцией пищеварительной системы следует соблюдать меру при их употреблении. Если в среднем можно признать, что у шляпочных грибов имеется около 25–30% белков от сухого вещества, то из этого количества только 15–17[/SIZE]% усваивается в желудке человека. Однако разнообразный состав белков и, главное, продукты их расщепления (незаменимые аминокислоты — лизин, лейцин, триптофан) вполне компенсируют этот недостаток и при умеренном усвоении их организмом.
Следует учесть, что у старых перезрелых съедобных грибов происходит накопление в ткани продуктов распада белков и особенно опасного среди них вещества — холина. Холин является продуктом разложения жиров и белков, обладает щелочной реакцией и легко соединяется с кислотами, образуя соли. Холин чрезвычайно ядовит и вызывает при употреблении внутрь такие характерные признаки отравления, как понос, понижение сердечной деятельности, увеличение кровяного давления, одышку и расстройство функций нервной системы. Он образуется у всех грибов в большем или меньшем количестве. Количество
его всегда растет по мере старения плодового тела гриба. У белого гриба холин найден в молодом возрасте в пределах 0,1–0,2% от сухого веса, у лисичек — 0,007%, у шампиньона — 0,007–0,009%, у мухомора — 0,4% от сухого веса. Холин всегда представляется спутником разлагающейся ткани, поэтому загнивающие и испорченные грибы довольно опасны для использования в качестве пищевых продуктов. От таких экземпляров следует тотчас избавляться и тем более не употреблять их в пищу.

[SIZE=10pt]Углеводы[/SIZE]

[SIZE=10pt]Содержащиеся в тканях грибов углеводы (маннит и глюкоза) способствуют появлению такого очень распространенного признака, как ослизнение верхней поверхности шляпки плодового тела во влажную погоду.
Интересно, что у молодых грибов присутствует в мякоти концентрированный углевод — полисахарид, или так называемый грибной сахар — микоза, а в старых грибах он уже не встречается, разлагаясь полностью на простые сахара — глюкозу и маннит. Такое явление связано с тем, что со временем активизируется работа внутренних ферментов, которые делят сложные вещества на составные части. Если живые клетки убить, например, ошпарив кипятком плодовое тело, то грибной сахар сохраняется в своем неизменном, первоначальном виде. Со старением же гриба или при его высушивании происходит полное окисление этого вещества.
Наибольшее количество углеводов содержится в ножке плодового тела гриба, тогда как в шляпке их уже намного меньше, хотя они и используются созревающими спорами. Личинки насекомых, часто поражающие грибы, располагаются чаще всего в ножке, реже в шляпке и почти никогда не встречаются в спороносящем слое (на нижней поверхности шляпки), не представляющим для них ввиду отсутствия сахара достаточно подходящий субстрат.
[/SIZE]

[SIZE=10pt]Алкалоиды[/SIZE]

[SIZE=10pt]У грибов нередко наблюдаются такие же, как и распространенные у высших растений, вещества — алкалоиды. Алкалоиды — это азотсодержащие соединения в виде солей, которые занимают значительное место в системе управления обменом веществ организма. Свое название они получили от арабского слова «алкали» — щелочь и греческого «ейдос» — подобный. Первый открытый в семенах мака алкалоид был назван морфием в честь греческого бога сна Морфея. Затем из различных растений были выделены такие активные алкалоиды, как стрихнин, кофеин, никотин, хиниатропин, которые довольно широко известны в качестве лечебных препаратов.
Типичным грибным алкалоидом является мускарин. Мускарин есть не что иное, как продукт окисления холина, который сам собой представляет ядовитое вещество. Естественно, что мускарин имеется у многих шляпочных грибов, но в достаточно ничтожных дозах, чтобы представлять такую опасность, как отравление. Рекордсменами по содержанию мускарина признаны в основном 3 вида грибов: мухомор, свинушка толстая и тонкая, сатанинский гриб. В их тканях его присутствие зафиксировано в пределах 0,016% от свежего веса плодового тела, однако количество алкалоида может изменяться в ту или иную сторону в зависимости от условий произрастания и развития грибов. Для отравления со смертельным исходом человеку необходимо съесть, по крайней мере, 4 кг свежих мухоморов за один прием, что едва ли возможно. Но сам мускарин способен усиливать свое действие, призывая в союзники так называемые опьяняющие токсины. Вследствие этого даже при небольших дозах совместное действие этих веществ вызывает довольно тяжелую интоксикацию. За мухомором издавна установилась прочная репутация морителя мух, отчего, собственно, он и заслужил свое название. Обычно шляпку гриба замачивали в течение нескольких часов в воде и посыпали затем сахаром.
Влекомые запахом «угощения» мухи садились на поверхность шляпки, пили выступающий экстракт и благополучно заканчивали свой жизненный путь.
Физиологическое действие мускарина на организм человека проявляется в замедлении пульса, обильном пото-, слюно- и слезотечении, расстройстве функций нервной системы. Сильным противоядием мускарину выступает алкалоид атропин, который моментально приостанавливает его токсическое влияние. Интересно, что, например, у рыжика имеются оба этих алкалоида и в связи с характерной нейтрализацией токсина атропином употребление гриба в пищу не вызывает каких-либо побочных эффектов.
[/SIZE]

[SIZE=10pt]Секрет грибного аромата[/SIZE]

[SIZE=10pt]У грибов встречаются в больших количествах разнообразные органические кислоты (муравьиная, уксусная), благодаря чему грибной сок из мякоти свежего плодового тела имеет довольно кислый вкус. Ароматические кислоты обуславливают своим присутствием неповторимый грибной аромат. Установлено, что в значительной степени его основу составляют глютаминовая кислота и эфирные выделения, образующиеся в процессе обмена веществ грибного организма. Надо отметить, что вообще запахи у грибов бывают весьма разнообразные и не всегда точно удается их определить. Например, вид некоторых плесневых грибов имеет запах капусты, а не имеющие запаха плодовые тела некоторых шляпочных грибов при перезревании издают очень сильный и большей частью противный, отталкивающий запах. В этом отношении особенно характерны подземные грибы — трюфели.[/SIZE]

[SIZE=10pt]Грибы-диагносты[/SIZE]

[SIZE=10pt]Среди запахов грибов особое внимание привлекают специфический чесночный запах, издаваемый белым трюфелем, грибами-чесночниками. Запах настолько силен, что эти грибы вполне могут служить приправой к еде вместо чеснока. По этому поводу следует заметить, что некоторые грибы (пенициллы) издают чесночный запах при их искусственном разведении на субстратах, содержащих, помимо главных элементов питания (сахара, белков и минеральных солей), небольшое количество мышьяка. Как известно, химический анализ веществ, содержащих мышьяк, часто используется в судебной медицине, для выявления случаев отравления. Определенная реакция позволяет выявить, содержится ли мышьяк в этих веществах или нет. При наличии мышьяка явственно выделяется чесночный запах. В данном случае, химическую экспертизу можно с успехом заменить биологической. Для этой цели особенно подходящим объектом является гриб пенициллиум бревикауле, который обладает способностью выявлять минимальное количество мышьяка в субстрате до 0,0001 миллиграмма. Сначала гриб разводят на хлебе, который представляет собой субстрат-инкубатор. Затем освоенный грибом хлебный мякиш помещают в пробирку, куда вкладывают и кусочек предмета, содержащего по предположению мышьяк. Если в кусочке действительно имеется мышьяк, то гриб даст знать об этом запахом чеснока, который может проявиться уже через несколько часов после постановки опыта. Исследованиями подтверждено, что действительно при наличии мышьяка в субстрате плесень образует специальное органическое вещество диэтиларсин, которое и обладает специфическим чесночным ароматом. Гриб пенициллиум бревикауле, очевидно, пришелся бы со своей уникальной способностью к месту в средневековой Франции, где, как мы знаем, дворцовые интриги нередко заканчивались умышленным избавлением от царствующих особ и престолонаследников. При этом в ход шли яства, сдобренные излюбленным преступниками ядом — мышьяком. Мышьяк вершил свое действие не сразу, а постепенно, накапливаясь в организме до определенной концентрации, и конец чаще всего представлялся результатом какого-либо внезапно развившегося заболевания, не имеющего отношения к яду. Такое свойство мышьяка позволяло чинить безнаказанно смену неудобных монархов и не опасаться при этом извлечения на себя подозрения со стороны бдительного ока ответственного за безопасность персонала. Возможность разоблачения, может быть, в какой-то мере снизила бы активность злодеев, заставив их призадуматься об ответственности.[/SIZE]

[SIZE=10pt]Минеральные вещества в грибах[/SIZE]

[SIZE=10pt]Помимо белков, углеводов и прочих веществ, грибы содержат определенное количество минеральных элементов, входящих в твердый остаток сухого веса — золу. Зола составляет минимальное количество сухого веса, приблизительно 6–10%. Соотношение минеральных веществ в золе таково:[/SIZE]

[SIZE=10pt]Калий 45%[/SIZE]
[SIZE=10pt]Фосфор 40%
Магнии 2%
Натрий 1,5%
Кальций 1,3%
Железо 1%
Кремний 1%
Сера 8%
Хлор 1%
[/SIZE]

[SIZE=10pt]Как видим, преобладающее значение выпадает на долю калия и фосфора, которые в общей сумме составляют 85% и более всего веса золы.
Калий — жизненно необходимый элемент, участвующий в углеводном обмене. Он часто образует так называемые калийные соли. Малое количество калия может приостановить процесс размножения у грибов.
Фосфор играет не меньшую роль в жизни гриба, чем калий, и активно участвует в биосинтетических и обменных процессах. Фосфор представляется в виде фосфорной кислоты. Значительное его количество в тканях грибов позволяет приравнять их к такому ценному продукту, как рыба.
Следующий элемент — сера, хотя и встречается в гораздо меньших количествах, чем кремний и фосфор, однако по существу является первостепенным по своему значению веществом, принимающим участие в синтезе белка.
Кальций содержится в грибах очень часто в соединениях с щавелевой кислотой, образуя щавелевокислую известь, которая выделяется обычно в форме кристаллов на поверхности грибных гиф и плодовых тел. Кальций способствует росту и накоплению массы грибной ткани.
Еще один элемент — магний активизирует работу ферментов, его недостаток приводит к падению активности разложения субстрата грибами.
Остальные минеральные вещества, найденные у грибов, хотя и необходимы для нормальной их жизнедеятельности, имеют все же второстепенное значение.
[/SIZE]

[SIZE=18pt]ФЕРМЕНТЫ ГРИБОВ[/SIZE]
[SIZE=10pt]Жизнедеятельность любого организма выражается обменом веществ. Этот процесс неосуществим без участия ферментов. С одной стороны, их функции заключаются в расщеплении сложных органических веществ и превращении их из нерастворимых соединений в растворимые составы, готовые для усвоения клеткой. С другой стороны, ферменты создают запасные вещества из более простых элементов. В этих постоянных превращениях заключается вся жизнь клетки любого организма, поэтому ферменты, можно сказать, составляют неотъемлемую часть каждого живого существа.
По характеру своей деятельности ферменты близки к катализаторам неорганического мира, вызывающим так называемые каталитические реакции. Под каталитическими реакциями подразумевают такие химические превращения, которые вызываются, или, вернее, ускоряются присутствием посторонних веществ, сами по себе при этом никаким изменениям не подвергающихся. При этом для успешного результата достаточно их минимального количества. Примером данной реакции может служить следующий опыт: чистый цинк помещается в серную кислоту, вследствие чего образуется слабое и медленное выделение водорода. Но если к этой смеси добавить каплю раствора хлорной платины, то немедленно начнется бурное и обильное выделение водорода. Ничтожное количество хлорной платины, не вступающее в соединение с элементами смеси и само по себе не изменяющееся, выступает здесь в качестве некоего стимула, или, как принято говорить в химии, катализатора. Абсолютно аналогичное явление наблюдается в органических соединениях под влиянием ферментов.
Как показывают опыты, разложение органических веществ и превращение их происходит в природе нередко и без участия ферментов, но крайне медленно и слабо. Присутствие же соответствующих ферментов намного ускоряет и усиливает этот процесс.
Многие ферменты обладают способностью беспрепятственно проходить сквозь оболочку живых клеток. Наличие у ферментов или отсутствие этого свойства дает возможность разбить их на две группы: ферменты наружной работы, проявляющие свою деятельность в расщеплении или в превращении веществ, находящихся вне клеток их образующих, и ферменты внутренней работы, деятельность которых ограничена содержимым той клетки, в которой они имеются. Таким образом, между ферментами наблюдается разделение труда: внешние ферменты накапливают из окружающей среды необходимые для роста и развития гриба материалы, внутренние же перерабатывают эти материалы, выделяя из них все ценное и отбрасывая все ненужное.
Интересной особенностью ферментов считается их узкая специализация, благодаря которой они действуют нацеленно только на какое-либо одно, определенное вещество. В случаях, когда предстоит «раскусить» очень сложное по строению вещество, всегда набирается несколько ферментов, действующих совместно или в определенной последовательности друг за другом. Таким образом, если иметь в виду, что функции ферментов, в конечном итоге, направлены к превращению нерастворимых органических соединений в растворимое вещество, главным образом в сахар, то в их деятельности наблюдается преемственность, вследствие чего нерастворимое образование поэтапно расщепляется на отдельные части, из которых затем вырабатывается растворимая глюкоза. Отсюда и присутствие в живых клетках грибных гиф разнообразных, иногда многочисленных ферментов. Например, у гриба пенициллума камембери, используемого при заготовке сыров «камамбер» найдено 11 видов ферментов, у лесного опенка — 15.
Количество ферментов в грибах подчиняется общему правилу. Чем более специально приспособлен к определенному субстрату вид (например, мухомор, растущий на почве хвойных и смешанных лесов), тем меньшим количеством ферментов он обладает (у мухомора их не более четырех). Многие низшие грибы, поражающие большое количество субстратов, и высшие, дереворазрушающие (трутовики, вешенка), которым приходится находить провиант в сложных соединениях древесины, обладают достаточно большим ассортиментом ферментов. Этим объясняется тот факт, что выделенные из естественной среды произрастания грибы хорошо развиваются в искусственных условиях в научных лабораториях. Здесь они растут в так называемой чистой культуре.
[/SIZE]

[SIZE=10pt]Чистая культура грибов[/SIZE]

[SIZE=10pt]Для жизни грибного организма необходимы углерод, азот и минеральные элементы, которые он добывает усердной работой из массы субстрата. В результате получаются растворимые и усвояемые вещества — сахар, аминокислоты и минеральные соли. Особенность чистой культуры состоит в том, что эти вещества даются грибу в чистом виде (питательного раствора), чем устраняется надобность в дополнительных усилиях по их извлечению. Вся энергия грибной клетки направляется к дальнейшей переработке этих веществ. Получается, таким образом, экономия времени и сил, что отзывается на быстроте и пышности роста грибницы.
Состав искусственных питательных сред включает питательные элементы, воду и вещество, позволяющее зацементировать среду в единое целое, придав ей твердый вид — агар. Агар — это своего рода растительный клей, близкий по составу к клетчатке, и добывается он из красных водорослей агар-агар. В пищевой промышленности агар используется в приготовлении кондитерских изделий. Например, кубики мармелада застывают при участии агара, а желеобразные начинки конфет приобретают свою консистенцию также благодаря нему. Агар значительно разбухает в воде.
Грибную культуру разводят в специальной посуде — чашках Петри, различных емкостях и т.п. Спорами или кусочком грибницы засевают поверхность питательного агара. Грибы прекрасный объект для исследований обмена веществ в организме. Чистая культура грибов позволяет максимально упрощенно получить ответы на многие вопросы: о роли того или иного питательного элемента в жизни клеток, скорости операций превращения различных веществ, зависимости развития от тех или иных условий и т.п.
Иногда грибы образуют маленькие плодоношения в условиях чистой культуры, демонстрируя тем самым свою 100-процентную принадлежность к тому или иному виду. Это особенно является важным обстоятельством, поскольку большинство грибов имеет одинаковое строение своих вегетативных органов и не всегда можно их отличить друг от друга, даже используя специальную микроскопическую технику. Если культура долго не развивает плодовые тела, то, пересеивая ее раз от раза в течение продолжительного времени на новые питательные среды, нельзя гарантировать точно, какого именно она племени. Возможно, что доставленное из леса существо уже давно принесло себя в жертву однотипному собрату и ухаживание ведется теперь за совершенно чуждым организмом. Такая неприятность уже случалась в исследовательской работе еще на заре приручения дикого шампиньона. Много сил и стараний было потрачено на то, чтобы прижилась предположительно его грибница в чистой культуре. Поддерживая ее жизнедеятельность, питательные среды подавались одна за другой, менялся их состав в расчете на составление самого изысканного рецепта, менялись разнообразные комбинации значений условий окружающей среды в надежде найти самую благоприятную. Однако все было тщетно. Цикл развития гриба никак не хотел приближаться к естественному концу — размножению. Ошибка вскрылась через продолжительное время и оказалось, что местом шампиньона довольно беззастенчиво пользуется некий несовершенный гриб. Выявить нахлебника помогло то, что он, будучи не в силах стерпеть восторга от радушия и гостеприимства, решился дать жизнь новому поколению. По характерным для низших грибов плодовым образованиям и была установлена его принадлежность. Но затем все равно упорство энтузиастов было вознаграждено, и первые плодовые тела шампиньона в чистой культуре были получены. Метод, используемый для этого, был довольно интересным. Он получил название «чашечных половинок». Чашки Петри (стеклянные блюдца с высокими бортами) заполнялись компостированным конским навозом в сочетании с дерновой почвой. Затем их стерилизовали и засевали грибницей, выращенной на зерне. На 10–14
 суток чашки оставляли в специальной влажной камере, с соответствующей температурой. Для плодоношения шампиньону необходим слой почвы, в котором будут завязываться плодовые тела и из которого они затем будут получать необходимую для развития влагу. Этот слой обычно насыпается сверху субстрата, в котором развивается грибница. В методе «чашечных половинок» ввиду невозможности расположения над поверхностью субстрата этого слоя (чашка с субстратом уже и до этого засыпана до краев) было решено почву уложить рядом с этим субстратом. Пустая чашка Петри заполнялась полностью увлажненной смесью дерновой земли, низинного торфа и мела и ставилась непосредственно сбоку, касаясь чашки с освоенной шампиньоном средой. Дальнейшее выращивание гриба происходило под стеклянным колпаком, куда были помещены обе чашки. Гифы грибницы, разыскивая подходящие условия для плодообразования, переползали в чашку с землей, сплетали внутри нее сети и затем, спустя некоторое время образовывали там плодовые тела маленьких шампиньончиков.[/SIZE]

[SIZE=10pt]Грибная жизнь ради ценного сырья[/SIZE]

[SIZE=10pt]Грибы в чистой культуре можно выращивать не только на твердой среде, но и на жидкой. Способ выращивания на жидкой среде практически не отличается от предыдущего способа — и там, и там, питание происходит за счет раствора питательных элементов. Однако на твердой поверхности гриб не рискует утонуть и каждой гифой он чувствует определенную опору из частиц субстрата. На жидком субстрате приходится побороться за свою жизнь, и единственным выходом кажется одно — превратиться в нечто плавучее. Что, собственно, гриб и делает. Его гифы тесно, одна к другой сплетаются в одной плоскости в единое целое, образуя поверхностную пленку. Такое образование наподобие плота довольно успешно противостоит природе воды, и даже способно выдержать ее небольшое возмущение.
Если в твердом субстрате гриб отправляется на охоту за пищей на всю его глубину, методично обследуя слой за слоем, то в жидкой среде это происходит несколько иным образом. Здесь «молочная река» непосредственно омывает грибные органы и надо только постараться при помощи небольших порций ферментов приготовить из нее традиционный коктейль.
Помимо поверхностной пленки жизнь гриба в водной среде может принимать и иные черты. Это происходит в том случае, когда жидкость приходит в результате какого-либо явления в движение, ее слои перемешиваются друг с другом и соблюдаются тем самым признаки ее поведения при шторме. Естественно, что пленка гриба через некоторое время при таких условиях уйдет на дно, будучи спроектированной, в расчете на стационарное, спокойное состояние среды. И тут грибы выручает их способность к выживанию. Она проявляется в налаживании жизни и в толще жидкой среды, на глубине при помощи отдельных элементов грибной ткани. Это могут быть образования различной формы — нити, шарики, обрывки переплетенных, ветвящихся тяжей. И здесь только необходимым является продолжение буйства водной стихии. Поскольку тогда внутри нее будет необходимый кислород. Вполне сносное существование и развитие грибов в такой казалось бы недружественной обстановке позволило выращивать их еще одним приемом чистой культуры — так называемым погруженным выращиванием. Этот прием оказался настолько хорош и эффективен, что им стали пользоваться для получения необходимых результатов в промышленных масштабах. Грибы в процессе своей жизнедеятельности выделяют в окружающую среду различные продукты: антибиотики, кислоты, витамины, ферменты и т.п. Эти продукты представляют собой побочные выделения обмена веществ. Они получили широкую известность и признание, став незаменимым сырьем в производстве очень ценных лекарственных препаратов и изделий легкой и пищевой индустрии. Погруженное выращивание позволяет использовать значительный объем питательных сред. Жидкость наливают в специальные чаны — ферментеры, емкостью от 10 литров до нескольких сотен литров. Естественно, что в этом случае выход нужных веществ (продуцируемых грибными клетками) увеличивается с единицы площади до максимальных пределов. Чтобы грибы не задохнулись в питательной жидкости, ферментеры при помощи специальных механизмов подвергают непрерывной встряске. После окончания «жидкого» периода развития гриба питательная среда напоминает собой густой суп, насыщенный «обломками» грибницы. Ее отфильтровывают до получения прозрачной жидкости. В дальнейшем используют и жидкость, и грибной осадок. Их качество и способности проходят ряд испытаний так называемыми тест-пробами. Например, при определении антибиотической активности грибной жидкости поступают следующим образом. В чашке Петри выращивают колонии бактерий или посторонних (других видов) грибов. На поверхность питательной среды, в каком-нибудь месте, накладывают полоски фильтровальной бумаги, смоченной в испытуемом растворе. При наличии в растворе антибиотика, вокруг полосок бумаги образуется зона задержки роста тест-микробов. Распространение их колонии минует «заминированный участок» стороной, довольствуясь свободной от сюрпризов территорией.
Кроме антибиотиков широкого спектра действия из грибной жидкости и экстрактов грибницы получают антибиотики с более специфическим направлением, запрограммированных на уничтожение опухолей и вирусов. Определяют свойства антибиотиков также путем опытов. Для отбора противовирусных препаратов применяют искусственное заражение животных (например, вирусом гриппа) и растений (вирусом табачной мозаики). Потом животным впрыскивают раствор антибиотика, а зараженную растительную ткань (листья) погружают в него. По скорости и степени выздоровления зараженных организмов судят об эффективности данного антибиотика. При отборе противоопухолевых антибиотиков используют в качестве тест-объекта раковые клетки (из зараженных тканей). Их смешивают с испытуемым антибиотиком, получая смесь жидкого состава. Затем полученную смесь вводят подкожно мышам. Через 10 дней обычно мышей убивают и определяют наличие опухолей. Если антибиотик достаточно активен, то, как правило, он уничтожает раковые клетки, не давая им вызвать образование опухолей.
По определении достоинств грибной жидкости и грибницы из них производят получение искомых продуктов в концентрированном виде. Жидкость выпаривают до твердого осадка, а грибную ткань подвергают экстракции каким-либо растворителем (спиртом, кислотой). Затем экстракт также упаривают. Искомые вещества представляются в виде порошка или кристаллов. Более подробную информацию о применении этих веществ можно найти в разделе книги «Применение грибов и продуктов их жизнедеятельности в хозяйственной практике и в медицине».
[/SIZE]

[SIZE=10pt]Ферменты в работе[/SIZE]

[SIZE=10pt]Теперь вернемся к ферментам грибов и остановимся подробно на их деятельности. По характеру своей деятельности ферменты делятся на несколько групп. Первая группа включает в себя ферменты так называемого гидролитического действия. Оно проявляется в следующем. «Команда» из нескольких ферментов расщепляет какое-либо вещество, одновременно присоединяя к его молекулам воду. Конечный результат такой работы — разжижение этого вещества. Характерным примером может служить картина развития какого-либо гриба на поверхности желатина. Верхний слой желатина расплывается лужицей от растворения его твердых составляющих материалов-белков. Таким следом отмечаются обычно ферменты-протеазы. Другие ферменты этой группы, выделенные в команду так называемых пектиназ, оставляют не менее содержательные знаки своего присутствия на том или ином субстрате. Название пектиназа дано этим ферментам не случайно, и произошло оно от их способности утилизировать такое вещество, как пектин. Пектином свойственно именовать межклеточное вещество растительных тканей, склеивающее смежные клетки. Более-менее значительные полости между клетками и скоплениями из них заполнены до предела пектином. Если грибу, имеющему в своем арсенале пектиназы, предложить в качестве субстрата материал с обильным содержанием пектина — например, ломти турнепса или моркови, — то по прошествии некоторого времени обнаруживается довольно любопытное зрелище. Пектиназы буквально выгрызают межклеточное вещество из растительной ткани, вследствие чего она распадается на отдельные мелкие части.
Жиры также подвергаются влиянию грибов. При этом «необходимые полномочия» делегируются ферментам — липазам. Их контакт с жирами заканчивается «полной потерей лица» последних, вынужденных «согласиться» на превращение в жидкую эмульсию. Из числа гидролизирующих ферментов грибов особый интерес представляют уреазы. Они ориентированы на разложение мочевины. Мочевина накапливается в грибных тканях как отброс. Причем это происходит только в случае усиленного питания грибницей азотистыми веществами на фоне углеводного голодания. Как
только в питательной среде появляется достаточное количество углеводов, грибница начинает поглощать их в избытке, игнорируя при этом азотсодержащие элементы питания. Необходимый для обмена веществ азот при помощи уреаз извлекается из мочевины и тут же поглощается.
Другая группа грибных ферментов — оксидазы. Она способствует окислению (разложению) накопленных грибницей запасных веществ. В результате этого вырабатывается необходимая энергия для проявления жизнедеятельности грибных клеток. Деятельность этих ферментов напоминает печку, сжигающую топливо. Образующееся при этом тепло разогревает окоченевшие члены, придавая им тем самым возможность двигаться. Типичные представители ферментов-оксидаз — лакказа и пероксидаза. В растительном мире лакказа встречается, например, в соке лакового дерева. Благодаря ей этот сок быстро твердеет и темнеет, образуя такой известный материал, как японский лак.
Еще одна группа ферментов — зимазы — принимает активное участие в процессе дыхания грибов. Поэтому чаще их называют дыхательными ферментами. Эти ферменты при наличии кислорода превращают накопленный в грибнице сахар в углекислоту и воду.
Перечисленные три группы ферментов считаются основными помощниками грибного организма. Каждая из них несет свое определенное предназначение. В совокупности исполнения функций этими группами гриб получает возможность не только не умереть с голоду, но и часто разнообразить собственное меню различными деликатесами, а также подумывать об улучшении жилищных условий под крышей любого приглянувшегося субстрата.
[/SIZE]

[SIZE=18pt]ПИТАТЕЛЬНЫЕ СВОЙСТВА ГРИБОВ[/SIZE]
[SIZE=10pt]К положительным свойствам грибов как пищевого продукта следует отнести их богатое содержание белковыми веществами, сахарами, отчасти жирами и фосфором. Выше уже были даны сведения о химическом составе грибов. В таблице приведенной ниже, даны результаты анализов съедобных шляпочных грибов, произведенных рядом исследователей.[/SIZE]

[SIZE=10pt]Виды грибов[/SIZE]

[SIZE=10pt]Протеин[/SIZE]

[SIZE=10pt]Жиры[/SIZE]

[SIZE=10pt]Маннит[/SIZE]

[SIZE=10pt]Глюкоза[/SIZE]

[SIZE=10pt]Экстракт.в-ва[/SIZE]

[SIZE=10pt]Клетчатка[/SIZE]

[SIZE=10pt]Зола[/SIZE]

[SIZE=10pt]Гриб-зонтик[/SIZE]

[SIZE=10pt]30,0[/SIZE]

[SIZE=10pt]5,1[/SIZE]

[SIZE=10pt]10[/SIZE]

[SIZE=10pt]4,3[/SIZE]

[SIZE=10pt]35,8[/SIZE]

[SIZE=10pt]9,3[/SIZE]

[SIZE=10pt]4,3[/SIZE]

[SIZE=10pt]Опенок зимний[/SIZE]

[SIZE=10pt]16,7[/SIZE]

[SIZE=10pt]5,2[/SIZE]

[SIZE=10pt]19,3[/SIZE]

[SIZE=10pt]3,9[/SIZE]

[SIZE=10pt]4,5[/SIZE]

[SIZE=10pt]41,5[/SIZE]

[SIZE=10pt]8,8[/SIZE]

[SIZE=10pt]Коллибия (денежка)[/SIZE]

[SIZE=10pt]35,5[/SIZE]

[SIZE=10pt]2,4[/SIZE]

[SIZE=10pt]9,6[/SIZE]

[SIZE=10pt]4,3[/SIZE]

[SIZE=10pt]25,2[/SIZE]

[SIZE=10pt]12,3[/SIZE]

[SIZE=10pt]10,5[/SIZE]

[SIZE=10pt]Вешенка[/SIZE]

[SIZE=10pt]16,2[/SIZE]

[SIZE=10pt]3,2[/SIZE]

[SIZE=10pt]21,3[/SIZE]

[SIZE=10pt]4,8[/SIZE]

[SIZE=10pt]24,6[/SIZE]

[SIZE=10pt]7,2[/SIZE]

[SIZE=10pt]12,5[/SIZE]

[SIZE=10pt]Навозник[/SIZE]

[SIZE=10pt]35,5[/SIZE]

[SIZE=10pt]1,5[/SIZE]

[SIZE=10pt]10,3[/SIZE]

[SIZE=10pt]20,6[/SIZE]

[SIZE=10pt]20,1[/SIZE]

[SIZE=10pt]3,3[/SIZE]

[SIZE=10pt]8,6[/SIZE]

[SIZE=10pt]Лисичка[/SIZE]

[SIZE=10pt]32,2[/SIZE]

[SIZE=10pt]1,8[/SIZE]

[SIZE=10pt]10,1[/SIZE]

[SIZE=10pt]-[/SIZE]

[SIZE=10pt]31,2[/SIZE]

[SIZE=10pt]13,1[/SIZE]

[SIZE=10pt]11,3[/SIZE]

[SIZE=10pt]Белый гриб[/SIZE]

[SIZE=10pt]41,1[/SIZE]

[SIZE=10pt]1,9[/SIZE]

[SIZE=10pt]16,2[/SIZE]

[SIZE=10pt]5,2[/SIZE]

[SIZE=10pt]18,7[/SIZE]

[SIZE=10pt]6,7[/SIZE]

[SIZE=10pt]9,3[/SIZE]

[SIZE=10pt]Гиднум Трюфель[/SIZE]

[SIZE=10pt]24,4[/SIZE]

[SIZE=10pt]4,6[/SIZE]

[SIZE=10pt]8,07[/SIZE]

[SIZE=10pt]6,1[/SIZE]

[SIZE=10pt]32,6[/SIZE]

[SIZE=10pt]14,0[/SIZE]

[SIZE=10pt]9,9[/SIZE]

[SIZE=10pt]Трюфель белый[/SIZE]

[SIZE=10pt]39,7[/SIZE]

[SIZE=10pt]2,1[/SIZE]

[SIZE=10pt]4,6[/SIZE]

[SIZE=10pt]5,4[/SIZE]

[SIZE=10pt]10[/SIZE]

[SIZE=10pt]29,5[/SIZE]

[SIZE=10pt]8,4[/SIZE]

[SIZE=10pt]Рыжик[/SIZE]

[SIZE=10pt]30,2[/SIZE]

[SIZE=10pt]8,02[/SIZE]

[SIZE=10pt]10,6[/SIZE]

[SIZE=10pt]3,8[/SIZE]

[SIZE=10pt]9,2[/SIZE]

[SIZE=10pt]32,1[/SIZE]

[SIZE=10pt]5,9[/SIZE]

[SIZE=10pt]Для сравнения рассмотрим содержание белков в следующих продуктах (в % на 100 г сухого в-ва).[/SIZE]

[SIZE=10pt]Мясо 30,6[/SIZE]
[SIZE=10pt]Пшеничная мука 8,03
Ячневая мука 6,39
Овсяная мука 9,7
Горох 27,0
Картофель 4,8
[/SIZE]

[SIZE=10pt]В грибах содержится большое количество воды, и в этом отношении сушеные плодовые тела имеют преимущества как более концентрированный продукт.[/SIZE]

[SIZE=10pt]Виды грибов Содерж. воды в %
Гриб-зонтик 91,25
Опенок зимний 92,7
Коллибия (денежка) 91,7
Вешенка 89,0
Навозник 94,3
Лисичка 91,9
Белый гриб 91,3
Гиднум 92,6
Трюфель белый 78,5
Рыжик 88,7
[/SIZE]

[SIZE=10pt]Как было упомянуто раньше, не все белковые вещества одинаково перевариваются организмом человека. Так называемый протеин утилизируется желудочным соком только на 60–70%, в зависимости от того, в каком виде используется гриб: засушенным, свежим или же размельченным в порошок. Порошок переваривается лучше, потому что в данном случае освобождается больше белка из разрушенных клеток. При отваривании свежего или засушенного плодового тела стенки клеток, состоящие из хитина и фунгина, сохраняются. Полезное внутреннее содержимое клеток используется недостаточно, поскольку оно предохранено стенками словно панцирем, стойко выносящим действие желудочного сока. Количество белков, обнаруженных в грибах, подвержено колебанию даже в пределах одного и того же вида. Отчасти это объясняется тем, что химический состав грибов зависит в той или иной степени от питательных свойств субстрата, на котором они развиваются, места произрастания и определенных экологических условий.
Помимо белков весьма ценным обстоятельством является присутствие в грибах углеводов. Заменяющий крахмал (у высших растений) гликоген имеет большое питательное значение. Так, содержащие его в большом количестве дрожжи представляют собой незаменимый продовольственный и лечебный продукт.
У грибов довольно высок процент содержания экстрактивных веществ, которыми, в основном, и обусловлен их приятный вкус. В этом отношении грибы превосходят многие овощи и плоды и могут быть сравнимы разве только с шоколадом, имеющим их в количестве 25–27[/SIZE]%.
Содержание золы в грибах определяется в 1–2% свежего или в 4–10% сухого веса. Зола в особенности богата калийными соединениями (до 45%) и фосфором (до 39%). По наличию фосфора грибы обгоняют такой продукт, как коровье молоко (28%). В отношении калия грибы можно приравнять к грушам (50%) и к винограду (56%). Грибы отличаются большим содержанием клетчатки, которое в некоторых случаях доходит до 42% от сухого веса. Опять же распределение ее в плодовом теле неоднородно, и, например, ножка имеет ее в большем количестве, чем шляпка. Поэтому шляпка пользуется неоспоримым преимуществом при употреблении в пищу. В отношении шляпок всегда необходимо придерживаться правила: удалять перед использованием пленку с верхней поверхности, так как именно в ней часто содержатся вредные или ядовитые вещества. Что касается нижнего спороносящего слоя шляпки, то по его цвету как по индикатору можно определить степень пригодности всего плодового тела в пищу. Дело в том, что у молодых съедобных грибов при созревании спор эта поверхность имеет более светлую окраску, чем у зрелых и старых. Такой признак сопутствует достаточно свежему состоянию гриба и в этом случае его можно употреблять без предосторожностей. По мере созревания плодового тела белки и жиры, содержащиеся в нем, подвергаются распаду и в ткани растет концентрация продуктов этой реакции. Возраст гриба выдает окраска нижней стороны его шляпки. Например, у перезрелого шампиньона она становится фиолетово-черной, у боровика — зеленоватой и т.п. В старину для определения ядовитости того или иного гриба широко применялся следующий способ. В кастрюлю, где варились грибы, рекомендовалось опускать предмет из серебра или луковицу. При этом если гриб, якобы, ядовит, то серебро чернеет, а луковица синеет или коричневеет. Однако такое изменение окраски может случиться с любым грибом, независимо от того ядовит, он или нет, поскольку обусловливается оно присутствием в грибных тканях соединений серы. Иногда также можно услышать совет употреблять в пищу только те грибы, которые служат, в свою очередь, пищей насекомым, слизням и другим низшим животным. На этот счет следует отметить, что различные грибы — как ядовитые, так и съедобные — часто поедаются этими существами, но ядовитые вещества, вредные для человека, на них особого влияния не оказывают.

[SIZE=10pt]==ҐҐ<div class="center">ПРИМЕНЕНИЕ ГРИБОВ И ПРОДУКТОВ ИХ ЖИЗНЕДЕЯТЕЛЬНОСТИ В ХОЗЯЙСТВЕННОЙ ПРАКТИКЕ<br /> И МЕДИЦИНЕ</div>ҐҐ==[/SIZE]

[SIZE=10pt]Дрожжи[/SIZE]

[SIZE=10pt]Грибы, названные данным словом, заслужили его благодаря своему свойству заставлять «дрожать» жидкость, в которой им довелось найти кров и еду. Дрожжам для развития не нужен кислород, они спокойно обходятся без него. При их дыхании образуется углекислый газ, который в виде пузырьков выходит на поверхность воды. Их жизнь осуществляется за счет брожения — процесса, позволяющего им выжить в безвоздушном пространстве. При брожении сахар как главный энергетический материал подвергается распаду. Продуктом этой реакции становится спирт. В связи с этой интересной способностью грибы заслужили большую популярность, превратившись в незаменимых производителей горячительных напитков, хлебобулочных изделий. Ежегодно в мире изготавливается одних только пекарских дрожжей не менее 700 000 тонн, а сухих кормовых дрожжей — около 200 000 тонн. Вина с помощью дрожжей получают из виноградных и плодово-ягодных соков. Пиво получают из зерен злаков. Чтобы облегчить работу дрожжей, зерна проращивают до образования ими солода. В солоде растительным ферментом амилаза крахмал превращается в сахар (мальтозу). Размолотый солод заливают водой и сбраживают затем эту смесь дрожжами. Конечный продукт брожения — пиво содержит до 5–6% спирта, сахар, экстрактивные вещества, белки, кислоты, дубильные вещества и углекислоту.
Сырьем для получения спирта могут служить как пищевые продукты (картофель, зерновые), так и отходы деревообрабатывающей и целлюлозной промышленности (сульфитные щелока). Поскольку так называемые спиртовые дрожжи не способны сбраживать сложные сахара (полисахариды), содержащиеся в этих продуктах, то последние подвергают предварительному осахариванию (гидролизу) кислотами или ферментами.
Дрожжи, накапливаясь в бродильных производствах в виде отходов, также находят свое применение. Их используют в качестве ценной кормовой добавки в пищевом рационе сельскохозяйственных животных. Дрожжевая биомасса также хорошо усваивается организмом человека. В этом случае их употребляют внутрь в жидком виде или в таблетках. 500 г сухих дрожжей заменяют по количеству белка 1 кг свежего мяса, 41 литр коровьего молока или 33 штуки куриных яиц. В качестве прекрасного витаминного препарата достаточно ежедневно принимать 25 г сухих или 100 г прессованных дрожжей. Перед употреблением дрожжевые клетки следует убить — залить их массу кипятком.
Существует довольно интересный способ использования дрожжей в быту — для борьбы с домашними насекомыми, например муравьями. Приготавливают раствор следующего состава: 10 г варенья плюс чайная ложка суспензии из дрожжей на 100 г воды. На выявленных маршрутах следования муравьев ставят небольшие емкости, заполненные этой жидкостью. Следует максимально упрощать доступ насекомых к ней, для чего емкости подбирают с довольно низкими бортиками (всевозможные крышки от пивных бутылок), либо, вообще, обходятся без них, нанося жидкость капельками на поверхность выбранных для засады мест. Характерная особенность домашних муравьев состоит в том, что они ориентируются в пространстве при помощи усиков-антенн. Так, наткнувшись на емкость или капельку, они ощупывают ее усиками и затем, обязательно окунают их в жидкость на предмет проверки ее удобоваримости. Как правило, первые, самые смелые, разведчики насыщаются жидкостью до предела, отчего их брюшки сильно раздуваются. Затем, не имея более возможностей продолжать чревоугодие, они не спеша, переваливаясь из стороны в сторону покидают лакомую площадку, стремясь донести до сородичей радостную весть о свалившейся невесть откуда манне небесной. Очевидно, эта весть, как и новый вид, еще недавно довольно изможденных товарищей, производят неизгладимое впечатление, в результате чего появляется большая колония особей, включая иногда даже муравьиную матку, которая отличается своими крупными размерами. Присутствие прародительницы муравьиного рода подчеркивает, что предложенная жидкость признана за весьма ценное питательное снадобье. Спустя 2–3[/SIZE] дня после пиршества муравьи, как правило, начинают вымирать. Причина здесь кроется в характерном свойстве дрожжевых клеток. Они растут и размножаются с громадной скоростью (будучи одноклеточными организмами), вызывая при этом существенные изменения в окружающей среде (кишечнике муравьев). Положение усугубляется еще и тем обстоятельством, что не ведающий удовлетворения аппетит муравьев заставляет принимать внутрь вместе с пищей большие порции дрожжевых клеток. При этом концентрация продуктов обмена веществ в организме бывает настолько велика, что приводит к гибели насекомых. Трупики насекомых обычно располагаются вблизи мест с повышенной влажностью — очевидно последним минутам их жизни сопутствует сильная жажда.
Среди дрожжей есть и природные виды, дикие дрожжи, которые распространены в субстратах, содержащих сахар: на кожице плодов, ягод, фруктов, в нектаре цветов, в соке деревьев.
Так называемые осмофильные дрожжи обитают в пчелином меде. Эти дрожжи лучше используют фруктозу (сахар меда), чем глюкозу и часто являются причиной порчи
меда, а также варенья, джемов и скисания вин.

[SIZE=10pt]Аспергиллы[/SIZE]

[SIZE=10pt]Этим общим названием объединены несколько видов микроскопических грибов. Впервые они были замечены и описаны в 1729 году итальянским ученым П. Микели. Их
естественная среда обитания — верхние слои почвы. Но значительно чаще их можно встретить на различных продуктах растительного происхождения, где колонии грибов
образуют налеты разного цвета, особенно часто голубовато-зеленые, обычно именуемые в обиходе плесенями. Колонии аспергиллов появляются на хлебе, хранящемся в условиях повышенной влажности, на поверхности варенья, на влажных обоях и т.п. Если рассматривать поверхность грибницы в микроскоп, то обнаруживаются на ней характерные выступающие образования, напоминающие наконечник лейки, из отверстий которой льются струйки воды. Поэтому аспергилл принято называть еще леечным грибом.
Аспергиллы начали привлекать к себе внимание с середины XIX века как активные помощники процессов разрушения самых разнообразных материалов, как производители различных ферментов и других продуктов обмена веществ. Поскольку грибы хорошо растут в лабораторных условиях, они стали излюбленным объектом исследований. Между 1891 и 1928 годами было опубликовано более 2000 работ по аспергиллам, посвященных, главным образом, биохимии, физиологии и генетике видов этих грибов. В настоящее время продолжается их активное изучение. Аспергиллы очень удобные модели в исследованиях генетических закономерностей, путей обмена веществ, различных физиологических процессов. Особенно широкое практическое значение имеет вид аспергиллов, образующий колонии коричневого, шоколадного или черною цвета (черная плесень). Часто они развиваются на зерне (во время его хранения), на плодах, овощах, хлопчатобумажных изделиях, коже и на материалах, богатых содержанием белков. Этот вид обладает разнообразной биохимической активностью. Грибы вырабатывают целый комплекс ферментов. Среди них — крахмалоразрушающие (амилазы), разлагающие белки (протеиназы), пектиназы (действующие на склеивающее вещество растительных тканей — пектин), жироразрушающие. ферменты, ферменты, разлагающие хитин (оболочку насекомых). Пектолитическими ферментами аспергиллов производят осветление фруктовых соков и вин. Такое известное вещество, как лимонная кислота, также получается при помощи этих грибов. Кислота является отходом жизнедеятельности гриба, культивируемого, в частности, в специальных чанах — ферментерах на жидкой среде, состоящей из свекловичного отвара. При выращивании аспергиллов данным способом используется также особенность этих грибов к синтезированию витаминов: биотина, тиамина и рибофлавина. Грибница выделяет их в питательную жидкость, которую затем отгоняют специальным образом, получая нужные элементы в твердом виде.
В лабораторных исследованиях аспергиллы используются также достаточно широко, что позволило русскому ученому Л.Н.Курсанову образно назвать эту группу грибов «биохимической лягушкой». Аспергиллы чрезвычайно чувствительны к колебаниям содержания в среде минеральных источников питания, вследствие чего, возможно, их применение для определения дефицита некоторых веществ в почве (калия, фосфора, магния, меди и др.), что позволяет отказаться от менее точных и медленных химических анализов.
Штаммы данных грибов, выделенные из заплесневелых кормов, токсичны для животных и человека и способны вызывать такие заболевания, как бронхопневмонию, легочный аспергиллез, отомикоз и др.
Еще один вид аспергиллов, образующий колонии желто-зеленого цвета, также имеет практическое значение.
Грибы этого вида поражают растительные остатки почвы, различные пищевые продукты, растительные масла, зерно, воск, парафин. Возможность приспособления к такому разнообразному количеству субстратов осуществляется за счет богатого ферментного аппарата. В связи с этим грибы используются на Востоке для пищевых и хозяйственных целей в течение уже не одного столетия. Например, спиртовая промышленность Японии целиком ориентирована на помощь грибных тружеников. При приготовлении традиционной водки саке применяется рис, зерна которого гидролизованы (разложены) ферментами аспергиллов. Для этого аспергиллу создают подходящие условия. Отваренные и стерилизованные отруби риса помещаются во влажную камеру, насыщенную спорами гриба. Через 40–48
 часов отруби сплошь покрываются белой грибницей. 
Ферментом амилаза она расправляется с крахмалом, составляющим основную массу рисовых зерен. При этом крахмал разрушается до простых Сахаров. На этом этапе воздействие гриба прекращают и видоизмененное им сырье отправляют уже на окончательную «сборку» напитка. Из освоенного грибницей риса также получают и сам инструмент ее деятельности — фермент амилазу. Для этого масса отрубей мацерируется (отмокает) в воде в течение определенного времени, в результате чего получается водный экстракт фермента. Затем экстракт выпаривают в вакууме при температуре 30–40[/SIZE]° С до приготовления концентрированного продукта—порошка амилазы. В дальнейшем фермент употребляется в лечебных целях, например, в качестве средства, известного под названием така-диастазы. Така-диастаза рекомендуется в пищевой рацион тем людям, у которых собственный организм не в силах производить достаточное количество амилазы (из-за болезни поджелудочной железы), испытывает определенный дефицит в ней.
Комплекс амилаз и протеиназ, выделенных из аспергиллов, используют во Вьетнаме для приготовления соево-рисового соуса «тыонг», считающегося обязательным повседневным продуктом населения.
У нас в стране освоены при помощи грибных ферментов аспергиллов такие технологии, как очистка кожи от волосяного покрова, удаление серебра из старых пленок и пластинок, производство спирта и приготовление различных видов сыров. На последнем специализируется фермент реннетаза, который расщепляет казеин. Всего 0,02 кубических сантиметра 2-х процентного раствора фермента в состоянии свертывать 5 кубических сантиметров молока! В этом отношении грибной фермент не уступает сычугу телячьему, выделенному из животных тканей.

[SIZE=10pt]Пенициллы[/SIZE]

[SIZE=10pt]Как и аспергиллы, эти грибы наиболее часто обнаруживаются в виде плесневых налетов на субстратах растительного происхождения. Интерес к пенициллам был проявлен, когда у них впервые была открыта способность образовывать антибиотик пенициллин. Тогда в изучение этих грибов включились ученые самых разнообразных специальностей: медики, химики, бактериологи, фармакологи. И это вполне оправдало себя, поскольку пенициллин был первым открытым антибиотиком, и его применение сыграло большую роль в науке, так как ускорило открытие и введение в лечебную практику других антибиотических веществ. Лечебные свойства плесеней, образуемых колониями пенициллов, были отмечены еще в 1873 году рувскими учеными В.А.Манасеиным и А.Г.Полотебновым. Тогда их использовали в лечении кожных заболеваний и сифилиса. Ну а официальным отсчетом лечебная история пенициллов ведется с 1928 года. В том году, в Англии, профессор А. Флеминг ставил опыты в своей лаборатории над грозной бактерией стафилококком. Поддерживая жизнедеятельность бактерии в искусственной культуре, он вскоре обратил внимание на характерную особенность. Колония бактерии, развивающаяся в питательной среде, в специальной чашке, притормаживала свой рост в участках, зараженных попавшей из воздуха сине-зеленой плесенью. Флеминг выделил плесень в чистую культуру (пересеял на новую питательную среду). Затем рядом экспериментов он доказал, что действительно гриб выделяет антибактериальное вещество, способное умерщвлять клетки бактерий. Профессор назвал его пенициллином. После работ Флеминга эстафету подхватили его коллеги во многих странах мира. В течение нескольких десятков лет научные мужи вели поиски простых методов получения, очистки пенициллина и проводили клинические испытания этого препарата. В результате был выделен наиболее удачный штамм (сорт) пеницилла, который производил отвечающее многим требованиям лекарство. Ему дали кодовое название Q-176 и, поскольку он был рожден в результате скрещивания нескольких видов грибов, именовали его не иначе как мутантом. В процессе такой мутации Q-176 приобрел способности к высокому производству антибиотиков и, самое главное, к хорошему развитию в искусственных условиях.
В настоящее время работа по созданию новых, более продуктивных штаммов продолжает вестись. Теперь для этой цели прибегают к помощи различных стимулирующих факторов — облучению рентгеновскими и ультрафиолетовыми лучами, действию различных химических реактивов, вызывающих мутацию и т.д.
Лечебные свойства пенициллина особенно разнообразны. Он помогает при лечении эндокардитов, перитонита, остеомиелита, активно борется с гонококками, анаэробными бактериями, вызывающими газовую гангрену, с возбудителями менингита, дает надежду на выздоровление безнадежным больным, когда другие лечебные средства бессильны. Применение пенициллов освоено также в пищевой промышленности, в частности, в производстве группы сыров, характеризующейся наличием так называемой «мраморности». Это сыр «Рокфор» во Франции, сыр «Горгонцолла» в Италии, сыр «Стилтон» в Англии. Всем этим сырам свойственны довольно рыхлая структура, специфический вид (прожилки и пятна голубовато-зеленого цвета) и особый, запоминающийся аромат. Культура грибов используется в определенный момент процесса изготовления сыров. Обычно в заключительной его стадии творожную массу помещают для созревания в специальную камеру-теплицу с температурой 13–14
° С и влажностью 50–60[/SIZE]%, воздух которой содержит споры соответствующих грибов. В течение недели поверхность сыра покрывается пушистым белым налетом плесени толщиной 1–2 мм. Через несколько дней налет приобретает голубоватый или серо-зеленоватый цвет. Масса сыра под воздействием ферментов грибов приобретает сочность, специфический вкус и запах. Способность некоторых пенициллов расти в рыхло спрессованном твороге объясняется тем, что они хорошо переносят низкое содержание кислорода в среде (в смеси газов, образующихся в пустотах сыра, его содержится менее 5%). Кроме того, они устойчивы к высокой концентрации соли в кислороде, что только стимулирует их образовывать ряд ферментов, разлагающих жировые и белковые компоненты молока.

[SIZE=10pt]Спорынья пурпурная[/SIZE]

[SIZE=10pt]Этот вид микроскопических грибов предпочитает жить в поле на колосьях ржи или пшеницы. На пораженных спорыньей растениях в соцветиях бывают хорошо заметны склероции, имеющие вид рожков черно-фиолетового цвета. В таком виде гриб переживает зиму. Сердцевина склероциев состоит из пучка живых гиф, а оболочка — из толстостенных отмерших клеток. Содержимое склероциев богато сахаром (3–4 %), жироподобными веществами — липидами, органическими кислотами, пигментами, смолами и алкалоидами. При уборке урожая склероции попадают в почву, зимуя затем в ней.
В наше время спорынья причиняет небольшой вред посевам, поскольку повышение культуры земледелия (очистка семян, обработка почвы) резко снизило риск заражения этим грибом.
Практическое значение спорыньи состоит в наличии у нее (в склероциях) токсических веществ — алкалоидов. Наиболее ядовитым из них является эрготинин. Если употребить в пищу продукты из зараженного зерна, то его действие выразится судорогами, длительными спазмами гладкой мускулатуры. Это свидетельствует о специфическом влиянии алкалоидов на функции нервной системы. В ничтожно малых дозах алкалоиды не причиняют вреда, а наоборот, приобретают способности высокоэффективного лекарства. В связи с этим из склероциев спорыньи было налажено их производство. В 1943 году из алкалоидов химическим путем был синтезирован такой известный препарат, как ЛСД. Он применялся в качестве антагониста адреналина. В современной медицине алкалоиды спорыньи нашли применение в лечении сердечно-сосудистых и нервных заболеваний. Интересно отметить, что вещества сходной с алкалоидами гриба природы входили в состав ритуального лекарства древних ацтеков и индейцев Мексики, обладавшего галлюциногенными свойствами.
Наиболее экономически выгодным способом получения алкалоидов считается культура спорыньи на ржи. Разработана и внедрена в практику методика искусственного разведения гриба на этом растении. Для заражения посевов ржи применяют их обстрел спорами спорыньи из пневматических распыляющих пистолетов. Сбор склероциев осуществляют специальными машинами. Обычно их урожай составляет 50–150[/SIZE] кг с 1 га поля. Затем рожки спорыньи мелют в порошок, который обрабатывается для Удаления жира спиртом или эфиром. Раствор фильтруют, из него отгоняют спирт, добавляют холодной воды, в результате чего алкалоиды выпадают в осадок. Далее жидкость упаривают и извлекают тем самым уже готовые алкалоиды. Свежевыделенные алкалоиды имеют достаточно резкий запах пригорелого мяса.
В природе существуют виды низших грибов, избирающие средой свой жизнедеятельности тела различных насекомых. При этом насекомоядные грибы не признаю других источников пищи, кроме как приготовленных по особой рецептуре животных тканей. Целая система специальных ухищрений позволяет этим грибам оседлывать ползающую, летающую и прыгающую братию. Искусно доводя контакт с ними до удовлетворения собственных интересов, грибы иной раз оставляют на обозрение целые кладбища из останков жертв. Такие способности не могли обойти вниманием ученые, бьющиеся над разгадкой вопросов биологической (естественной) защиты сельскохозяйственных культур от паразитов. Благодаря этому из ряда врагов насекомых были выделены несколько групп грибов, поражающих в большом количестве и особенно эффективно, причем не только вредителей-насекомых, но и кровососущих их сотоварищей. Приручение их особого труда не составило, и успех в последующей работе с ними превзошел все ожидания. Итак, остановимся теперь на каждом отдельном виде этих грибов более подробно.

[SIZE=10pt]Энтомофторовые грибы[/SIZE]

[SIZE=10pt]Эти грибы развиваются в природе на довольно широком круге насекомых: капустной белянке, капустной моли, различных тлях, щелкунах, трипсах, яблоневой медянице, пауках, клещах. Есть среди них и особи специального назначения, действующие исключительно только против клопов, сверчков и саранчи.
Все энтомофторовые грибы образуют внутри тела насекомого довольно слаборазвитую одноклеточную грибницу. Со временем грибница распадается на отдельные элементы различной формы и размеров. Током гемолимфы эти элементы разносятся по телу хозяина и, оседая в ряде потаенных мест, начинают свое разрушительное действие. Внутреннее содержимое организма насекомого постепенно оказывается полностью разрушенным и переваренным грибными клетками. Тело насекомого приобретает вид набитого грибной тканью мешка. Сохраняется неизменным только покров этого мешка из хитина. Считается, что смерть насекомого наступает от нарушения циркуляции гемолимфы и от выделяемых грибом продуктов жизнедеятельности — токсинов и ферментов. Продолжительность периода от прорастания спор до гибели у крупных насекомых (саранчи) занимает от 5 до 8 дней, у мелких (комары, мошки, тли) не превышает 2–3
 дней.
Особенности развития энтомофторовых грибов вызывают большой интерес. Только им присущ такой характерный признак в распространении спор, как их отстрел, – причем на такое расстояние, которое порой может превысить их собственные размеры в тысячи раз. Толчок, отбрасывающий спору, образуется в результате высокого давления плазмы внутри специального спороносного образования. Массовая гибель некоторых насекомых, например саранчи, происходит в определенные часы, обычно между 15 и 17 часами пополудни. Ночью гриб приводит в порядок спороносные выступы, доводит их способность к предстоящей работе до соответствующего состояния, а обстрел из них спорами начинает рано утром, когда особи саранчи скапливаются кучами. Кроме того, что спора должна попасть на тело насекомого, ей нужно как-то закрепиться на нем прилипнуть. И здесь помогает то обстоятельство, что утром, как правило, повышена влажность от изобилия выступающей на листьях растений, траве росы. От множества спор, отброшенных грибом, образуется плотное облачко мучнистого вида. Не ожидающие какого-либо подвоха экземпляры саранчи спокойно наблюдают как оно плавно кружит над их головами, накрывая затем их целиком. Уже через сутки насекомые будут жестоко наказаны за подобное поведение. Грибы начнут свое развитие с разжижения внутренних органов тела хозяина. При этом можно наблюдать, как у насекомого растягивается по сегментам брюшко. Затем оно разрывается и изнутри начинает вытекать жидкость с элементами грибницы. В дальнейшем эти элементы прорастают, образуя на поверхности сплошной налет грибницы в виде бархатистой щетки. На брюшной поверхности погибших насекомых вырастают корнеподобные присоски, которыми гриб прикрепляет пораженную жертву к какой-нибудь поверхности. В таком виде насекомое может храниться до следующей весны. Мумифицированное таким образом насекомое представляет своего рода мину замедленного действия для живых сородичей. Отстреливаемые от него споры продолжают вершить безнаказанную агрессию гриба и чинить, тем самым, масштабную чистку рядов саранчи.
Чтобы спора в большинстве случаев добиралась до искомого субстрата (тела), компенсируя возможные недолеты и перелеты, ей предоставлены природой уникальные способности. Так, оказываясь в неподходящем для развития гриба месте, она находит в себе самой достаточное количество энергии и сил для совершения следующей серии прыжков в окружающем пространстве в поисках восприимчивого хозяина.
При развитии некоторых видов энтомофторовых грибов сопутствующий этому инфекционный процесс у ряда насекомых протекает иначе, чем у саранчи, и не носит характера общего поражения и превращения их в заминированные спорами ловушки. Например, зеленому яблоневому клопу внедрившимся грибом позволяется довольно долго и активно двигаться. Попутно гриб щедро осыпает новые и новые участки массами спор, заставляя тем самым своего хозяина исполнять роль ходячего очага болезни.
В распространении энтомофтороза большое значение имеет поведение насекомых. Например, пораженные особи саранчи взбираются на верхушки растений или кустарников, погибая там, в характерной позе, зацепившись передними и средними лапками за стебель, всегда вверх головой. Такая позиция способствует максимальному попаданию отстреливающихся спор на находящихся в нижних ярусах растений и ползающих на почве насекомых. Кроме того, высоко расположенные споры легче разносятся во все стороны воздушными потоками.
В природе первоначальное заражение энтомофторовыми грибами происходит от спор, сохраняющихся в почве или на растительных остатках. Раз, начавшись, болезнь развивается чрезвычайно быстро с последующим образованием спороносных выростов, отстреливанием из них спор и прорастанием грибов на новых особях. Нарастание болезни идет в геометрической прогрессии. Миграция (перелеты) зараженных крылатых насекомых с последующим отстрелом спор на популяции здоровых особей является наиболее эффективным путем рассеивания заболевания.
В быту энтомофторовые грибы часто оставляют следы своей деятельности на комнатных мухах, которых они избирают в качестве подходящих объектов для питания. Пораженные мухи остаются прикрепленными к оконным стеклам, стенам. Брюшки мух, сильно увеличенные в размерах, имеют между сегментами бархатистый налет из выступивших наружу спороносных образований грибов. Вокруг тел мух образуется ореол из отбрасывающихся спор.
Долгое время энтомофторовые грибы считались строгими паразитами, не способными расти вне тела хозяина. Однако исследователям удалось выделить из погибших насекомых несколько видов грибов этого семейства и вырастить их в условиях чистой культуры. При этом использовались питательные среды, богатые белками животного происхождения (мяса, рыбы, куриных яиц). В условиях культуры большое значение имеет сохранение жизнеспособности энтомофторовых грибов. Поэтому для их размножения используют также и живых насекомых. Для этой цели идеально подходят гусеницы златоглазки, выращенные в специальных инсектариях. Получая в искусственных условиях массу спор грибов, становится возможным применение их против популяций вредных насекомых. При внесении спор под сельскохозяйственные культуры используют также одновременно полив растений, что увеличивает процент заражения личинок и взрослых насекомых вдвое.
Очень впечатляющими оказались попытки борьбы при помощи энтомофторовых грибов с кровососущими насекомыми-паразитами. Обычно заражению подвергали прибрежную растительность водоемов, отстреливая при этом массы спор из специальных приспособлений. Делалось это осенью, поскольку в этот период у паразитов происходит усиленная яйцекладка, от качества которой зависит численность насекомых в следующем году. Уничтожая самок; грибы сокращали запасы зимующих яиц, чем прямо влияли на снижение поголовья рождаемых паразитов. Наибольшее число таких зараженных грибами насекомых, как комаров, встречалось под покровом растительности у водоема (75–95[/SIZE] %). Погибшие комары часто плавали на поверхности водоема или лежали на влажной зоне прибрежной земли. В воде споры грибов прорастали в грибницу, образующую студенистую пленку по всей прибрежной полосе водоема в период массовой гибели комаров. В сухих местах тела погибших комаров разрушались, а вокруг их останков четко был виден споровый налет.
Использование данных о грибных эпидемиях насекомых учитывается при прогнозировании массового размножения вредителей — насекомых. Правильно поставленный прогноз на снижение численности вредителей от влияния энтомофтороза позволяет снять запланированную химическую обработку, дать этим большую экономию средств и ограничить вред, причиняемый живой природе химическими препаратами.

[SIZE=10pt]Грибы рода Боверия[/SIZE]

[SIZE=10pt]Эти грибы отличаются от энтомофторовых собратьев тем, что паразитируют на значительно большем числе насекомых, причем как на представителях их полезных видов (тутовом шелкопряде), так и на вредных (колорадском жуке, картофельной коровке, луговом и кукурузном мотыльке). В целом ими поражается около 60 видов насекомых. Примечательно, что клещи, например, невосприимчивы к вниманию грибов (обладают иммунитетом) и в случае присутствия грибницы на своих тканях способствуют их переносу и распространению. Один из видов боверии, специализирующийся, в основном, на добывании пропитания из жуков, попутно выделяет токсины, убивающие комаров. Сила этих веществ такова, что при попадании их в водоемы вблизи мест сосредоточения насекомых, те сражаются моментально наповал.
При попадании споры боверии внутрь тела хозяина, через 32–48
 часов она прорастает в виде отдельных клеточных фрагментов грибницы. Они свободно плавают в лимфе и размножаются с большой скоростью делением и почкованием. Смерть насекомого наступает внезапно в результате блокирования циркуляции лимфы. В дальнейшем начинается разрушение частей тела хозяина. Способность грибов к освоению кроме насекомых и растительных субстратов в большой степени облегчает их разведение в искусственных условиях на средах, содержащих пивное сусло, ломтики овощей и т.п. После периода развития, включающего массовое накопление спор, приготавливают препараты для борьбы с насекомыми. Причем это может быть как взвесь чистых спор, так и их суспензия, а также отдельные части вегетативной грибницы с явно выраженными спороносными образованиями. Наибольшую известность из этих средств получил разработанный в 60-х годах Украинским институтом защиты растений препарат «Боверин». Он представляет собой густую суспензию спор. Содержание спор колеблется в пределах до 25 млрд. единиц на 1 г смеси. Также существует и аэрозольное исполнение препарата 5-процентной концентрации. Боверин успешно применяется в борьбе, например, с яблоневой плодожоркой, колорадским жуком, свекловичным долгоносиком. При опыливании аэрозолем гусениц плодожорки наблюдается массовая их гибель, что приводит к снижению червивости плодов на 60%. При опрыскивании суспензией червивость плодов снижается на 45–50[/SIZE]%. Поражение колорадских жуков и долгоносика на стадии гусениц и куколок составляет также довольно большой процент — 70–75%. У взрослых особей вредителей, обработанных боверином, количество отложенных яиц, уменьшается обычно на 50% по сравнению с контролем (незараженными экземплярами).

[SIZE=10pt]Хищные грибы[/SIZE]

[SIZE=10pt]Данный вид грибов специализируется на отслеживании, ловле и последующем умерщвлении микроскопических животных — нематод и коловраток. Грибница хищных грибов развивается в почве, на растительных остатках. Здесь грибы коротают свои дни в ожидании появления потенциальной жертвы. При помощи специальных ловчих приспособлений они осуществляют свой замысел и большинству животных не удается избежать печальной участи. Наибольшее распространение у грибов имеют так называемые клейкие ловушки — маленькие овальные или шаровидные головки, сидящие на коротких веточках и обычно обильно покрытые клейким веществом типа смолы, либо трехмерное сплетение клейких сетей, состоящее из большого числа колец.[/SIZE]

[SIZE=10pt][/SIZE]​

[SIZE=10pt]Хищные грибы: 1 — нематода; 2 —-трехмерная сеть из гиф;
3 — клейкие выросты.
[/SIZE]

[SIZE=10pt]Нематода имеет очень маленькие размеры — длина ее варьирует от 0,1 до 1 мм. Однако гифы, сплетающие ловушки, обладают размерами еще меньшей величины, вследствие чего охота не всегда развивается по благоприятному сценарию для гриба. Но как бы то ни было, если нематоде удается выскользнуть из цепких грибных объятий, она все равно будет обречена, поскольку на теле остаются обрывки грибницы. Вопрос только времени, когда они прорастут в новое полноценное образование и окончат жизнь животного.
Сам процесс ловли нематоды клейкими сетями напоминает некий аттракцион, в котором гриб играет довольно зловещую роль. Представ перед лабиринтом из гиф нематода проникает внутрь, пытаясь найти в нем короткий путь наружу. При этом неизбежно ее тело касается сети, а затем прилипает к ней. Пытаясь освободиться, животное активно двигается, извивается и в результате все больше прилипает к сети. Затем движения ее становятся вялыми, а потом вообще прекращаются. Через некоторое время из сети-ловушки вырастает гифа и вплотную приближается к потерявшей силы нематоде. Продырявливая оболочку нематоды гифа, проникает в ее тело. Внутреннее содержимое тела начинает пронизываться ответвлениями гиф, которые постелено, высасывают из него все соки. Процесс поглощения грибом их продолжается около суток. После этого нетронутой остается только оболочка нематоды.
У некоторых хищных грибов ловушки образуются в виде колец, лишенных клейкого вещества. Их действие осуществляется механическим путем. Обычно такие кольца состоят из трех сегментов, располагаясь на коротких веточках грибницы. Внутренняя поверхность отличается необычайной чувствительностью. Любое даже незначительное раздражение вызывает их мгновенное сокращение (в течение 0,1 с). Сегменты надуваются, почти полностью закрывая собой просвет кольца. Если нематоде суждено попасть в такую ловушку, то шансов выбраться из нее практически не остается. Гибель происходит от механического сдавливания в кольце, поскольку диаметр ее тела в месте захвата уменьшается почти вдвое. Механизм действия сжимающих колец управляется специальным рецептором ацетилхолином, вызывающим сокращение сегментов.
[/SIZE]

[SIZE=10pt][/SIZE]​

[SIZE=10pt]Кольца хищных грибов: а — положение до захвата жертвы; б — положение в момент захвата жертвы — нематоды. Хищные грибы хорошо растут в лабораторных условиях. Однако, имея достаточно пищи, они забывают про свои чудо-ловушки и не образовывают их. Но стимулировать их появление возможно, напомнив грибам об естественном источнике питания — нематоде и, в частности, ее собственным присутствием в питательной среде. Таким образом, осязая жертву, гриб снова становится хищником. Уникальные способности хищных грибов позволяют занять им достойное место в списке активных борцов с вредителями сельскохозяйственных культур.[/SIZE]

[SIZE=10pt]Опенок[/SIZE]

[SIZE=10pt]Во многих старинных лечебниках содержатся сведения об антираковых свойствах различных шляпочных съедобных грибов. В наше время проведены многочисленные опыты по выявлению среди этих грибов видов с ярко выраженной противоопухолевой активностью. Особенно интенсивно эти исследования ведутся в Японии. Это объясняется развитым научным потенциалом этой страны, традиционной склонностью японцев к растительной пище, а также предпочтением использования лекарств природного, естественного происхождения.
Наибольший процент активных видов грибов зарегистрирован среди так называемых дереворазрушающих грибов, развивающихся на древесине. Это опенок, гриб-баран, или грифоля курчавая, и вешенка. Рассказ о них начнем с опенка.
Опенок выращивается в искусственной чистой культуре на жидкой питательной среде. Такую среду обычно разливают в чаны — ферментеры, куда затем и вносят посевной материал в виде кусочков грибницы. В период развития грибницы накапливаются различные вещества — белки, ферменты, кислоты, витамины. Причем они присутствуют как в ее ткани, так и в жидкой среде. Их выделяют специальным методом, получая, таким образом, необходимое для производства лекарственных препаратов сырье. В различных экспериментах над подопытными животными было выявлено, что у опенка наиболее эффективными свойствами борьбы с раковыми клетками наделены белковые соединения. Так, они в 81% случаев тормозили рост саркомы, карциномы, рака молочной железы, опухолей нервной системы, а также развитие лейкемии.
Помимо противоопухолевых веществ опенок производит и другие вещества довольно полезного действия. Основная их доля падает на ферменты. Например, ферменты тромборастворяющего действия. Работа этих ферментов проявляется в рассасывании кровяных сгустков — тромбов, и в некоторых случаях благодаря этому удается избежать сложных операций.
В пищевой промышленности Японии пользуются запатентованными средствами из ферментов гриба, специализирующихся на борьбе с бактериями, так называемых хитиназ. Благодаря им удается избежать заражения бактериями консервируемых продуктов.
В связи с тем, что во многих странах остро ощущается потребность в кормовом белке, возможно устранение этого дефицита обогащением грибницей опенка различных растительных материалов — отходов сельскохозяйственного и лесоперерабатывающего производств. Солома, кукурузные кочерыжки, льняная костра, подсолнечная лузга, опилки, освоенные опенком, представляют собой высококалорийную пищу, которую и предлагают на корм скоту. Исследование биологической ценности грибных клеток показало, что содержание незаменимых аминокислот в них значительно превосходит аналогичное в таких продуктах, как молоко и картофель, а важнейший серосодержащей аминокислоты — метионина вообще не поддается сравнению, превышая показатели растительных тканей во много раз. Наличие в грибнице витаминов, кислот, жироподобных веществ усиливает значение получаемого при помощи опенка сырья.
Освоенный грибницей субстрат из растительных остатков может с успехом применяться и в качестве органических удобрений. Например, компост из опилок, полученный при участии гриба и внесенный в почву, в 3 раза повышает урожай салата и огурцов. Отмечено также положительное влияние от внесения субстратов под многие овощные культуры, причем здесь грибное сырье может заменить собой все виды других химических и биологических удобрений. Будучи внесенной в почву, грибница входит в состав ее микофлоры, которая разлагает растительные остатки и принимает участие в общем круговороте органических веществ.
[/SIZE]

[SIZE=10pt][/SIZE]

[SIZE=10pt]Гриб-баран(грифоля курчавая)[/SIZE]

[SIZE=10pt]Это довольно оригинальный по внешнему виду гриб. Плодовое тело имеет общее основание (ножку), из которого вырастают многочисленные выросты, увенчанные шляпками. Диаметр такого образования может составлять 30 см. Гриб-баран развивается в основном на корнях дубов, причем предпочтение отдает живой породе. Из плодового тела гриба выделены белковые соединения, обладающие высокой противоопухолевой активностью (96%).[/SIZE]

[SIZE=10pt]Вешенка[/SIZE]

[SIZE=10pt]По характеру своего воздействия на организм больного человека вешенка отличается от предыдущих видов. Прежде всего, это касается природы тех веществ (выделенных из гриба), при помощи которых оно и осуществляется, — так называемых полисахаридов. Полисахариды гриба тормозят развитие различных злокачественных новообразований, однако, при этом прямого влияния на них не оказывая. Эффекта они добиваются несколько иным путем. Полисахариды повышают активность клеток тимуса (вилочковой железы, ответственной за иммунитет), вовлекая их в работу на создание мощного иммунологического механизма, направленного на подавление жизнедеятельности раковых клеток. Такую взаимосвязь удалось проследить в ряде экспериментов над мышами. Так, в случае удаления вилочковой железы, полисахариды были бессильны помочь больным особям, и только когда железа оставалась на месте, пусть даже со значительным понижением своих функций, способности грибных «агентов» проявлялись в должной степени.
Благодаря тому, что полисахариды (основные лекарственные вещества вешенки), не только борются с конкретным заболеванием, но и попутно приводят в норму ослабленную иммунную систему, возможности их применения достаточно широки. Целый ряд заболеваний, вызванных в большой степени понижением способностей защитных сил организма, достаточно хорошо поддается излечению. Среди них можно отметить заболевания кожи
(фурункулы, гнойники и т.п.), желчно-каменную болезнь, гипертоническую болезнь, а также болезни, связанные с радиоактивным облучением. В последнем случае, используются не только полисахариды, но и в большом количестве сами плодовые тела вешенки. Клетчатка гриба, не перевариваясь организмом, обладает способностью аккумулировать из него радионуклиды и, естественно, выводить их наружу.
Еще одно неоспоримое преимущество полисахаридов вешенки — в их низкой токсичности. Причем это свойство сохраняется даже при довольно длительном периоде употребления этих препаратов.
В качестве сырья для получения полисахаридов используют природные и полученные в искусственной культуре плодовые тела вешенки, грибницу, выращиваемую на твердых субстратах или на жидкой среде.
[/SIZE]

[SIZE=18pt]ПОЧВЕННЫЕ ГРИБЫ И ИХ ВЫРАЩИВАНИЕ[/SIZE]
[SIZE=10pt]Почвенными грибами называются виды, поселяющиеся на разлагающихся растительных остатках — опавших листьях, хвое, ветках. Они питаются за счет содержащихся в этих материалах питательных элементов, способных обеспечить им достаточно полноценную жизнедеятельность.[/SIZE]

[SIZE=10pt][/SIZE]

[SIZE=10pt]Шампиньоны[/SIZE]

[SIZE=10pt]Шампиньоны В[/SIZE][SIZE=10pt]? настоящее время шампиньоны выращивают более чем в 60 странах мира. На их долю приходится почти 80% объема всех выращиваемых в искусственных условиях грибов. В природе встречаются различные дикорастущие виды шампиньона, которые довольно широко отличаются друг от друга, как по внешним признакам, так и по 
требованиям, предъявляемым к условиям среды обитания. Это обыкновенный, луговой и полевой шампиньоны. Излюбленные места их распространения — городские газоны, свалки, скотные дворы, открытые пространства лугов. Естественным субстратом (питательной средой) дикорастущим шампиньонам служат разлагающиеся органические материалы почвы. Долгое время попытки развести дикорастущие виды шампиньонов оказывались неудачными. Это продолжалось до тех пор, пока в кандидатах на роль «домашнего» гриба не появился так называемый двуспоровый шампиньон. Этот вид, кстати, очень редко наблюдаемый в природе, исключительно легко «пошел на контакт», вследствие чего долгожданные поиски, наконец, увенчались успехом.
Еще в 1868 году были определены необходимые для удачной культуры условия: темнота, достаточная влажность, температура 12–16[/SIZE]°С и особо подготовленная почва. Так, в частности, массовое выращивание шампиньонов проходило в известковых пещерах окрестностей французской столицы. Здесь грибную культуру поддерживали круглогодично. Кроме того, близкое расположение большого города, обеспечивало стабильный сбыт продукта. Французский ученый Миэж (1907 г.) так рекомендовал желающим разводить шампиньоны у себя в комнатах или других помещениях: «Конский навоз без соломы накладывается в ящики толщиной 25 см и ему дают перегореть в течение нескольких дней, после чего его придавливают руками и производят посев грибницы на глубину 10–12 см. Затем прикрывают ящик соломой. Через 5–6 недель начинают появляться первые шампиньоны». 
В России промышленное производство шампиньонов было начато в 1848 году известным огородником-грибоводом Е.Грачевым. Тогда в основном использовались для этой цели теплицы.
Культивируемый двуспоровый шампиньон обладает более ценными вкусовыми качествами, чем его дикие сородичи, а технология его выращивания довольно доступна и проста, поэтому не приходится жалеть, что он стал единственным их всех видов шампиньонов, прижившимся на огородной грядке.

[SIZE=10pt]Внешние признаки и требования шампиньона двуспорового к условиям выращивания[/SIZE]

[SIZE=10pt]Шляпка гриба в диаметре достигает 10 см, полукруглая, выпуклая, с возрастом распростертая, белого цвета, позднее грязно-коричневая, чешуйчатая или гладкая. Мякоть плодового тела плотная, белая, сочная, на изломе розовеет или краснеет, обладает кисловатым вкусом. Нижняя сторона шляпки в молодом возрасте гриба имеет розовато-серую окраску, в зрелости — темно-коричневую.
Споровый порошок темно-коричневый. Ножка длиной 3–6
 см, толщиной 1–2[/SIZE] ем, гладкая, цилиндрическая, к основанию суженая, полая или цельная, с кольцом.
Шампиньон двуспоровый не требует для своего развития сожительства с древесными растениями, что совершенно необходимо так называемым микоризным грибам (белому, подберезовику, подосиновику). Он извлекает пищу из растительных остатков, при помощи грибницы, пронизывающей сетями гиф почву.
Для получения благоприятных результатов в разведении шампиньонов совершенно необходимо соблюдать некоторые условия. Среди них первым, конечно, является применение качественного посадочного материала — грибницы. Затем следуют уже условия правильного приготовления субстрата (компоста), в котором предстоит развиваться грибу, соблюдение соответствующих параметров микроклимата на разных стадиях выращивания, и, наконец, использование покровной смеси достаточно хорошего качества. Из этих слагаемых, собственно, и состоит весь процесс выращивания шампиньонов в искусственных условиях. Начнем описывать этот процесс по порядку с приготовления питательной среды для грибов.

[SIZE=10pt]Приготовление компоста (питательной среды)[/SIZE]

[SIZE=10pt]Как правило, этот этап считается очень ответственным, поскольку на нем закладывается основа жизнедеятельности грибной культуры.[/SIZE]

[SIZE=10pt]
Схема формирования компостного штабеля
[/SIZE]

[SIZE=10pt]Питательную среду обычно составляют из соломы и навоза. Солома предпочтительней всего выбирается пшеничная или ржаная, навоз лучше всего конский, но можно применять и свиной, коровий, овечий, а также кроличий и птичий помет.
Следует соблюдать определенные нормы расхода соломы для субстрата, поскольку от этого зависит полноценность приготавливаемого питания. Наименьший объем соломы должен составлять 100 кг. Меньшим количеством обойтись никак нельзя, иначе не произойдет так называемой ферментации компоста. Ферментация смеси соломы и навоза осуществляется различными микроорганизмами. Они разлагают твердые компоненты смеси, приготавливая из нее удобную для развития грибницы шампиньона среду. Запустить механизм их действия на «полную катушку» позволяет употребление растительного сырья в необходимом и определенном количестве.
Чрезвычайно важным является момент увлажнения смеси. Здесь следует сказать, что нельзя допускать как недоувлажнения, так и переувлажнения. В случае избытка воды питательный компост не отдаст своих внутренних запасов грибнице вследствие воздухонепроницаемости структуры, и это может окончиться ее гибелью. Если воды недостаточно, то компост опять же не станет удобным источником питания: из-за плохой ферментации его компоненты останутся в труднодоступном для грибных гиф виде. Как видим, нужно учитывать возможность таких отклонений и потому пытаться решить проблему увлажнения оптимальным образом. Для этого необходимо правильно рассчитать норму воды на единицу сухого веса смеси, а также соблюсти | правильную технологию замачивания материалов. Для увлажнения 100 кг сухой соломы рекомендуется использовать 350–400
 литров воды, для увлажнения 100 кг навоза — 100 литров. Итого, если имеется в наличии 100 кг соломы и 100 кг навоза общий объем воды в их увлажненной смеси должен составить 450–550[/SIZE] литров.
Солому и навоз увлажняют по отдельности. Солому укладывают в какие-либо емкости и заливают водой. Если солома спрессована в тюки, то их необходимо развязать, распустив массу. Замачивание соломы продолжается 1 -2 дня.
Увлажнять солому можно, за неимением подходящих емкостей, путем полива водой из шланга или ведер. В этом случае растительную массу раскладывают прямо на земле. Степень насыщения водой определяют на глаз (потемневший цвет соломы) и на ощупь (по выделению влаги из горсти сжатого в руке пучка стеблей). Последним способом не всегда бывает возможным достичь оптимальных параметров влажности, поэтому им желательно пользоваться, в крайнем случае.
Далее рассмотрим несколько составов для компостной смеси, особенно часто применяемых при выращивании грибов.
Состав I: солома (воздушно-сухая) — 100 кг, помет куриный 80–100 кг, гипс — 6 кг.
Состав II: солома (воздушно-сухая) — 100 кг, навоз — 100 кг, мочевина — 2,5 кг, гипс — 8 кг, мел — 5 кг, суперфосфат — 2 кг.
Для приготовления качественного компоста лучше всего брать свежий помет или навоз, так как с хранением уменьшается их питательная ценность. Необходимо следить также за тем, чтобы в помете или навозе не было компонентов подстилки сельскохозяйственных животных и птиц. Содержащиеся в подстилке опилки и стружка деревьев хвойных (ввиду присутствия в них смолистых веществ) могут отрицательно повлиять на жизнедеятельность грибов. В состав II, как показано выше, входят удобрения. Их используют в связи с тем, что навоз уступает помету по содержанию азота и фосфора — важнейших питательных элементов, используемых грибами при развитии.
Приготовление компоста, или ферментация, — это сложный микробиологический процесс, сопровождающийся обильным выделением аммиака, углекислого газа и паров воды. Поэтому его следует проводить в хорошо проветриваемом помещении, либо под навесом на открытом воздухе, не допуская попадания атмосферных осадков на компост. При этом компостную кучу можно накрыть сверху полиэтиленовой пленкой, оставляя открытыми боковые стороны.
Для того чтобы компостный бурт полностью был охвачен ферментацией, требуется его соответствующим образом уложить. Предварительно увлажненные солому и навоз делят на 3 или 4 приблизительно равные части и укладывают в штабель послойно. На каждый слой соломы кладут слой навоза, причем должно соблюдаться соотношение: не менее трех слоев, как того, так и другого. Каждый слой соломы дополнительно слегка увлажняют (сбрызгивают поверхность водой), чтобы уменьшить потери от испарения и, в случае выбора состава II, посыпают сверху мочевиной по 700 г на каждый слой, если слоев три (и по 600, если слоев четыре). Бурт должен быть высотой до 1,5 м, шириной до 1 м и длиной около 1,3 м.
Через 5–6 дней после закладки штабеля делают первую перебивку. При этом все части смеси меняют местами, верхний слой опускают, нижний поднимают вверх, тщательно перетряхивают вилами и дополнительно увлажняют. Еще спустя 4–5 дней делают вторую перебивку, затем через 3—4 дня — третью, а еще через 3–4 дня компост, наконец, перемешивают в четвертый, последний раз. При внесении мела (для создания оптимальной кислотности), гипса и суперфосфата в увлажненный субстрат необходимо как можно равномернее распределить эти материалы, чтобы компостируемая масса поглотила бы их всем своим пространством, а не отдельными участками. Перебивка осуществляется с целью тщательного перемешивания всех компонентов смеси и получения, как правило, более однородного состава, а также обеспечения доступа воздуха во все слои компостного штабеля, остро необходимого для жизнедеятельности микроорганизмов, ведущих процесс ферментации.
Если ферментация протекает по благоприятному плану, то об этом достаточно красноречиво будет свидетельствовать температура горения компоста. На 2–3 день после его закладки температура внутри массы на глубине 30 см должна уже подскочить до 55–70°С. В дальнейшем она будет таковой на протяжении всего периода приготовления питательного субстрата. Если установится достаточно низкая температура, то это признак того, что компост недостаточно ферментируется. Причины такого явления возможны две: либо недостаточное увлажнение, либо из-за пересыхания компоста от излишнего выветривания. Устранить это следует таким образом. При перебивке в компост добавляют изрядное количество воды, а саму массу плотно утрамбовывают. Чтобы компост не подвергался отрицательному влиянию ветров, его дополнительно прикрывают пленкой из полиэтилена.
Если ферментация проходит более-менее без отклонений, то обычно через 25 дней ее считают состоявшейся. К этому времени из компоста не будет доноситься запаха аммиака, а его компоненты приобретут темно-коричневый цвет. На ощупь у них будет рыхлая и сыпучая структура, отдельные соломины, извлеченные из кучи, могут быть разорваны очень легко, без усилий. Взятый горстью компост не прилипает к рукам, при сжатии легко пружинит, а между пальцами просачиваются капельки воды. Если вода будет, однако, выделяться ручейками, то придется констатировать переувлажнение компоста. В этом случае его целиком необходимо просушить, разбросав по поверхности тонким слоем и прикрыв сверху газетами. Через полчаса в него добавить 1–2 кг мела и еще раз перемешать.
Из 100 кг соломы и 100 кг навоза на конечной стадии приготовления субстрата получается около 300 кг компоста готового к посеву грибницы.
При перебивках компоста необходимо следить за тем, чтобы он ни в коем случае не контактировал с землей (во избежание заражения вредными микроорганизмами). Поэтому, если штабель формируется на открытом воздухе, между ним и землей обязательно прокладывают изолирующий материал: рубероид, листы оргалита. Чтобы с большей гарантией подстраховаться от неприятных сюрпризов, компост можно пастеризовать, то есть обработать паром при помощи парогенератора.
В Польше при подготовке компоста пользуются специальным способом, разработанным лабораторией культивирования грибов Института овощеводства города Скерневицы. Компост укладывается в пластмассовые перфорированные ящики. Их обычно располагают в подвальных помещениях в виде трехъярусных стеллажей. Когда компост загружается в ящики, температура его составляет 55°С.
Через 3 дня она падает до 25°С — пригодной для посева грибницы. До набивки в ящики компост подвергается пастеризации в специальной камере. В ней в течение 12 часов поддерживается высокая температура воздуха — 65°С путем непрерывной подачи пара, смешанного со свежим воздухом. Затем температуру снижают до 50 и далее в течение следующих дней (5–7) понижают на 20 каждые сутки. Обеззараженный таким образом компост представляет собой благоприятную среду для грибницы шампиньона, что, конечно, отзовется в будущем достаточно стабильным и высоким урожаем.

[SIZE=10pt]Набивка компоста[/SIZE]

[SIZE=10pt]Для выращивания шампиньонов в теплое время года пригодны подвалы, погреба, сараи, землянки, теплицы, небольшие, затемненные соломенными матами парники. Можно разводить грибы и в открытом грунте, используя, в основном, тенистые места, а также места, расположенные с северной стороны любых построек, где всегда наблюдается более низкая температура воздуха.
При благоприятных погодных условиях можно провести два оборота культуры в год: весенне-летний и летне-осенний.
В специально оборудованных системами отопления и вентиляции (приточной и вытяжной) помещениях можно выращивать грибы круглый год.
Шампиньоны безразличны к свету и могут обходиться при развитии его полным отсутствием. Прямые солнечные лучи даже вредны для плодовых тел, так как обжигают нежную кожицу шляпок и высушивают покровный грунт.
На приусадебном участке можно построить из подручных недефицитных материалов своего род инкубатор для получения грибов—шампиньонницу. Сначала для этого отрывают небольшой котлован в почве глубиной 0,5 м и размерами в плане 2x2 м. Затем сколачивают из досок каркас шампиньонницы. Снаружи его обивают досками. Изнутри на стены и крышу натягивают полиэтиленовую пленку или рубероид. Для утепления шампиньонницу обкладывают пенопластом, торфом. Дно шампиньонницы лучше всего исполнить из армированных цементных плит. Компост накладывают прямо на них, заражают грибницей и перекрывают все пути контакта внутреннего пространства с окружающей средой, кроме отверстий воздухоотводящего и воздухопроводящего каналов. Общий сбор грибов с шампиньонницы данных размеров может составить до 50 кг.
Какой бы способ ни был выбран в качестве основного для разведения шампиньонов, любой из них начинается с набивки или укладки компоста в специальное образование — грядку. При этом тщательно соблюдается условие, какими бы ни были длина и ширина грядки, ее высота (глубина) должна быть не менее 20 см и не более 30 см. Увеличение размера высоты (глубины) грядки, как правило, никак не отражается на развитии культуры, поскольку нижние слои компоста будут недоступны для разложения грибницей ввиду малого присутствия в них кислорода. В этом случае грибные гифы, однако, все равно пытаются достать всю питательную массу до конца, чем значительно удлиняется период наступления планового плодоношения. Если шампиньоны выращивают на открытом воздухе, то для гряд предварительно выкапывают в земле траншеи (глубиной до 30 см). На дно насыпают гравий, крупнозернистый песок слоем 5 см. Стенки траншеи укрепляют досками. Затем их заполняют компостом. Сам компост не должен контактировать с землей по вполне понятным соображениям (из-за возможности заражения вредными микроорганизмами). Дренажный материал (гравий и песок) желательно перед употреблением промыть в воде. Заглубление в почву гряды необходимо потому, что этим устраняется возможность пересушивания компоста. Однако можно устраивать гряды и на поверхности земли, используя в качестве стенок доски, листы оргалита (полосы) и уберегая тем самым поверхность субстрата от излишнего испарения. Гряду лучше всего формировать выпуклую с толщиной компоста посередине — 20 см, а по краям до 15 см. Выпуклая гряда имеет большую площадь плодоношения по сравнению с плоской.
Набивают компост в гряду следующим образом. Нижний слой уминается слабо, каждый последующий — более сильно. Если при этом ощущается, что компост на ощупь клейкий (переувлажненный), то до закладки в гряду его следует разбросать тонким слоем на поверхности и просушить.
Поверхность гряды должна быть тщательно выровнена, не иметь значительных впадин и бугров. Обычно при расходовании 100 кг компоста покрывается 1м2 посадочной площади.
Компостом также можно набивать ящики (слоем не менее 20 см) и полиэтиленовые мешки. Размеры их подбираются такими, чтобы в них можно было уложить не менее 10–15
кг компоста слоем до 30 см.
После набивки гряд на открытом воздухе их изолируют от воздействия солнечного света и осадков навесами из брезента или любого световодонепроницаемого материала, установленными на деревянных опорах.[/SIZE]

[SIZE=10pt]Посадочный материал[/SIZE]

[SIZE=10pt]Приготовленный и уложенный компост засевают кусочками грибницы шампиньона. Грибница должна быть свежей и стерильной (не содержащей на своих тканях возбудителей инфекции — бактерий, низших грибов). Обычно грибницу такого состояния можно получить только в условиях оснащенной специальным оборудованием лаборатории. Здесь предназначенные для переноса грибницы субстраты — зерно или компост проходят спецподготовку — стерилизацию. Стерилизация для уничтожения спор вредных микроорганизмов производится при помощи автоклава. Автоклав представляет собой котел, внутри которого создаются температура и давление пара, губительные для вредных микроорганизмов. Побывав в нем определенное количество времени, питательный субстрат очищается от присутствия чужеродных организмов, в какой бы то ни было форме. Полученную чистую среду (зерно или компост) засевают (в условиях строгой антисептики) спорами шампиньонов. В дальнейшем из них прорастает грибница, а сами зерно или компост начинают играть роль ее носителей. Подкармливаясь ими, время от времени, грибница обосновывается в них, словно в некоем жилище, ожидая «приглашения» на этап заложения культуры. Если такого рода «приглашение» затягивается, то в ее жизнедеятельности могут возникнуть осложнения, приводящие нередко даже к гибели. В связи с этим необходимо учитывать, что оптимальный срок хранения грибницы до посева на зерне (в холодильнике) при температуре 0-+3°С составляет около 3 месяцев, на компосте — до года.
Зерновая грибница отличается большей урожайностью, но вместе с тем обладает довольно капризным характером. Отчасти это связано с тем, что с детства грибница была окружена обилием питательных веществ, их доступность и калорийность «избаловали» ее. Грибница, выращенная на зерне, предъявляет высокие требования к качеству субстрата и условиям выращивания. Любое незначительное отклонение способно повлиять на ее активную работоспособность. Поэтому начинающим грибоводам лучше всего приобретать компостный посадочный материал — грибницу, развитую на компосте. С самого начала обустройства в относительно бедной питательной среде она жила заботой о выживании, чем, несомненно, подготавливала, силы на будущее быть способной постоять за себя. Такая грибница довольно успешно обходит препятствия, вызванные оплошностью при приготовлении компоста, а также несоблюдением оптимальных условий для разведения культуры.
В России с 1983 года на выращивании качественного посадочного материала специализируется совхоз «Заречье» в Московской области. На его базе функционирует завод, выпускающий до 500 тысяч литров грибницы в год. На изготовление отвечающего всем стандартам материала уходит 3–4
 месяца кропотливой работы. За несколько лет на заводе была создана собственная коллекция продуктивных, устойчивых к болезням штаммов (сортов), обеспечивающих высокие урожаи. Их количество достигает 30. Различаются они тем, что из них вырастают шампиньоны разного цвета и вида: с белыми, кремовыми, коричневыми шляпками, гладкие, с чешуйками, маленькие, большие — одним словом, грибы на любой вкус. Коммерческая грибница выпускается двух распространенных видов — зерновая и компостная. Зерновая грибница поступает в продажу в перфорированных целлофановых пакетах, компостная — в стеклянных банках.
Обычно грибницей из одной банки засевают 1,5 м2 площади гряды, а зерновым мицелием из пакета — Зм 2[/SIZE]?.
Перед посадкой грибницу, хранившуюся в холодильнике, следует прогреть в течение суток при комнатной температуре.
Можно попытаться в качестве посадочного материала использовать и дикую грибницу. Для этого ее отыскивают в природной среде обитания шампиньона двуспорового. Гриб произрастает в степной и лесостепной зонах. Иногда встречается на юге лесной зоны (примерно на широте Москвы). Начинают поиски грибницы в сентябре-начале октября, когда наступает пора плодоношения грибов. Сначала аккуратно удаляют с места-донора все готовые тела. Затем снимают верхний слой перегноя до зоны почвы, переплетенной многочисленными белыми грибными нитями — гифами. Наклонившись, обнюхивают оголенный участок. В нос должен ударить резкий запах приятного грибного аромата. Ножом или мусорным совком извлекают крупные куски — блоки грибницы размером с кирпич. Далее их можно хранить в подсушенном состоянии в темном месте 30–40 дней. Следует заметить, что посадку культуры грибов при помощи дикой грибницы можно осуществлять в исключительных случаях, скорее ради эксперимента, нежели в качестве основного приема, поскольку трудно гарантировать ее 100-процентное приживление (в новых для нее условиях).

[SIZE=10pt]Посадка грибницы[/SIZE]

[SIZE=10pt]Обычно в стеклянной банке содержится 700 г грибницы, в пакете — 350–400 г. Непосредственно перед заражением компоста их открывают. Содержимое извлекают на свет, отламывают кусочки размером с голубиное яйцо. Затем рукой или совком приподнимают слой приготовленного субстрата и на глубину 5–7[/SIZE] см помещают грибной кусочек. (Зерновой мицелий обычно рассыпается, и его при посеве используют горстями.) Уложив грибницу в одном месте, ее плотно прижимают приподнятым слоем компоста и переходят к посеву в следующем. Места посадки располагают в шахматном порядке на расстоянии 15–20 см друг от друга.
Зерновую грибницу можно сеять иным путем. Ее размельчают до отдельных зерен и посыпают ими поверхность грядки, руководствуясь нормой расхода на 1 м2. Потом грибницу накрывают слоем компоста толщиной 5–6 см. Около 1/3 предназначенной для посадки грибницы рассыпают сверху на поверхности грядки. Это делается для того, чтобы ускорить разрастание мицелия шампиньона в верхнем слое субстрата и защитить последний от развития вредных микроорганизмов, в частности плесени.
После окончания посадки грибницы компост накрывают сверху газетами, либо другой, хорошо впитывающей воду бумагой. Такая предосторожность необходима, поскольку ею обеспечивается защита от попадания на компост спор возбудителей инфекции. Также поддерживается стабильная влажность и, наконец, обеспечивается в питательной среде высокий уровень углекислого газа. Газ получается в результате обмена веществ в тканях грибницы и служит хорошим стимулятором ее развития (до периода плодоношения).
После посева грибницы необходимо следить за тем, чтобы прикрывающий бумажный слой был постоянно влажным. Для этого его поливают из лейки с мелким ситечком. При этом ни в коем случае нельзя допускать попадания воды внутрь субстрата. По мере подсыхания верхнего слоя с бумагой увлажнение повторяют.
Посадку грибницы осуществляют при температуре субстрата, не превышающей 25°. В случае, если значение температуры оказывается выше, ждут пока оно не понизится до нормы. Если в течение нескольких дней температура не понижается и субстрат продолжает гореть, то это свидетельствует о незаконченности процесса ферментации. Здесь требуется помочь микроорганизмам, осуществляющим ее, ускорить их деятельность. Для этого субстрат разрыхляют, увеличивая доступ кислорода. Вследствие данного приема микроорганизмы испытывают приток свежих сил, что позволяет им быстрее сыграть свою роль в окончательном разложении субстрата.

[SIZE=10pt]Уход за культурой в период развития грибницы[/SIZE]

[SIZE=10pt]Период роста и развития грибницы шампиньона продолжается около двух недель. Все это время температура в компосте должна соответствовать определенным параметрам и быть на 2–3° выше температуры окружающей среды. Так, при температуре воздуха — 21–23[/SIZE]° С, температура в компосте колеблется в пределах 24–27°С. Если температура компоста близка к 30°С, то рост грибницы прекращается. В случае дальнейшего повышения температуры происходит необратимое явление — гибель грибницы. Замер температуры следует осуществлять градусником, который втыкают в компост в нескольких местах на достаточную глубину, чтобы получить более объективную картину.
Снизить температуру помогает активное проветривание культуры (на улице с гряд снимают слой покрытия из бумаги, а в помещении открывают окна).
Температура в компосте может также понизиться до 17–18° С (нижнего предела для разрастания грибницы). Тогда культуру необходимо согреть, укрыв поверхность гряд сухими соломенными матами или сухой мешковиной.
Нельзя забывать в период развития культуры и о поддержании высокой влажности окружающего воздуха. Для этого при выращивании шампиньонов в открытом грунте применяют натянутые над компостом мокрые полотенца (в непосредственной близости от его поверхности), а также ведут умеренный полив верхнего его слоя. В помещениях увлажняют стены и пол так, чтобы на них постоянно присутствовали бы капельки воды, либо ставят емкости с водой.
Чтобы удостовериться в том, что процесс развития гриба идет правильно, поступают обычно следующим образом. Приподнимают верхний слой компоста в 2–3 местах, куда были посажены кусочки грибницы. При хорошей приживаемости грибницы через неделю после посева от каждого кусочка вглубь субстрата проникают белые нити на 5–7 см. Это достаточно наглядно демонстрируется при использовании приема контроля. В случае медленного разрастания грибницы период роста культуры затягивается на срок до 4 недель. Такому повороту в немалой степени способствует низкая влажность субстрата, а также пониженная температура (ниже 20°С).
Если компост подсыхает, то его необходимо дополнительно увлажнить, перемешать и как можно плотнее утрамбовать. Затем следует высеять новую порцию грибницы и накрыть поверхность культуры влажной бумагой, следя в дальнейшем за ее состоянием (достаточно влажным).
Спустя 2–4 недели после посева грибница обычно пронизывает весь субстрат и образует на поверхности его сплетение нитей в виде паутины. Этот признак должен служить сигналом к тому, что подошло время перейти к следующему этапу выращивания культуры.

[SIZE=10pt]Засыпка компоста покровным грунтом[/SIZE]

[SIZE=10pt]Бумагу с поверхности гряд удаляют. Теперь на нее следует уложить покровную землю. Роль покровной земли исключительно важна. Без нее появление плодовых тел было бы невозможно. Кроме того, что она снабжает грибы водой, ею обеспечивается благоприятный водно-воздушный режим.
К покровному слою предъявляют следующие требования. Земля, используемая в нем, должна обладать высокой влагоемкостью (30–35
%), быть рыхлой, воздухоемкой (около 40%), а во время полива не должна слипаться настолько, чтобы не допустить беспрепятственного газообмена между компостом и воздухом.
Покровный грунт стимулирует появление плодовых тел и служит защитой грибнице шампиньона от неблагоприятных воздействий окружающей среды.
Покровную смесь готовят из нескольких материалов. Это обычно хорошо разложившийся низинный торф и известковая крошка в соотношении 3:1 по объему. Существуют также различные варианты. Вот некоторые из них: 1) 9 частей торфа и 1 часть мела. 2) 5 частей торфа и 4 части огородной почвы плюс 1 часть мела. 3) Огородная или дерновая почва с 3% (по объему) мела. Мел или известковая крошка необходимы для создания в покровном фунте оптимальной кислотности.
Покровную смесь рекомендуется готовить заранее, за 4–5[/SIZE] дней до нанесения на поверхность гряд. Твердые составные части смеси следует просеять и затем тщательно смешать друг с другом для получения однородного состава. Объем материалов для смеси рассчитывают, исходя из площади посева и толщины покровного слоя. Следует учесть также дополнительную норму в пределах 10–15% — на засыпку ямок, образующихся на гряде после сбора грибов.
Непосредственно перед использованием покровный грунт увлажняют, а затем насыпают на поверхность субстрата и распределяют равномерным слоем. Толщина слоя не должна превышать 4 см. Расход грунта на 1 м2 площади составляет 2–3 ведра вместимостью 10 л. Покров должен быть влажным, но не настолько, чтобы это затрудняло укладку. В ее процессе из слоя покровного грунта даже при небольшом его сжатии в компост не должна выделяться вода.
Итак, как только на поверхности гряд появилась паутинка грибницы, необходимо начинать укладывать покровную землю. Позднее нанесение покровного слоя может надолго отодвинуть начало плодообразования шампиньона. После укладки покрова следует постоянно контролировать его влажность. При подсыхании на поверхности грунта может образовываться корка, что очень нежелательно. Это затрудняет воздухообмен между субстратом и окружающей средой и, в конечном итоге, отрицательно сказывается на качестве урожая.
Поливают покровный грунт из лейки с мелким ситечком. При поливе следят за тем, чтобы вода не попадала в компост, так как это может привести к загниванию и последующей гибели грибницы.
После укрытия покровной смесью компоста грибница начинает проникать в грунт отдельными мощными тяжами. Температуру окружающего воздуха в это время поддерживают на уровне 18°С. В последствии на грибных тяжах будут закладываться плодовые тела. Для удаления уже вредного для культуры углекислого газа применяют активное проветривание гряд (в помещении). В случае недостаточной аэрации на поверхности гряд может произойти запушение грибницы в виде отдельных ватообразных комочков. Такое явление сопровождается, как правило, достаточно высокой температурой воздуха (более 20°С). Следствием этого может быть резкое снижение объема урожая. Поэтому, во избежание данной неприятности (при появлении первых признаков запушения грибницы на поверхности гряд), необходимо соблюдать режим достаточно усиленного проветривания и приближать значение температуры к оптимальному. В помещении этого добиваются увлажнением стен и пола. При испарении влаги (от сквозняка) температура воздуха над грядами понижается.
Существует еще один важный прием ухода за культурой шампиньона после нанесения покровного грунта. Примерно через неделю после этого проводят рыхление грунта на всю его глубину. Это необходимо для создания условий лучшего доступа воздуха к субстрату, находящимся под грунтом. Рыхление осуществляют специальным инструментом — гребешком.

[SIZE=10pt]
Приспособление для рыхления грунта: 1 — планка; 2 — гвозди. Гребешок представляет собой деревянную планку длиной 14 см, в которую вколочены в ряд гвозди на расстоянии примерно 3 см друг от друга. Свободные концы гвоздей выступают на 5 см. Подсчитано, что операция рыхления грунта повышает урожайность грибов примерно на 3 кг с 1 м2.
[/SIZE]

[SIZE=10pt]Плодоношение шампиньонов[/SIZE]

[SIZE=10pt]Вскоре после засыпки компоста покровным грунтом появляются первые плодовые тела шампиньонов. Это происходит приблизительно через 2–3 недели. Температура воздуха в этот период не должна превышать 15–18[/SIZE]°С. При более высокой температуре плодообразование затягивается по времени, а если и наступает, то проявляется, как правило, одиночными плодовыми телами

[SIZE=10pt]
Развитие плодового тела шампиньона
[/SIZE]

[SIZE=10pt]Плодоношение грибов протекает волнами в течение 6–8 недель. Появление каждой новой волны происходит обычно через неделю. При температуре воздуха 15–18[/SIZE]°С за первые 4 волны собирают 80% всего урожая.
Шампиньоны нужно собирать осторожно, чтобы не повредить грибницу. Для этого гриб прижимают к грядке и вращают, отрывая от мицелиальных тяжей. Оставшееся углубление засыпают покровной землей.
В период плодоношения для шампиньонов необходимо высокое содержание в окружающей среде кислорода. Если в пространстве остается какое-либо количество углекислого газа, то возможно торможение роста плодовых тел и ухудшение их качества. В этом случае вырастают грибы с тонкими длинными (вытянувшимися в поисках кислорода) ножками и маленькими, быстро раскрывающимися шляпками.

[SIZE=10pt]
Неправильная форма молодого плодоносца шампиньона, сформировавшегося при недостаточной вентиляции
[/SIZE]

[SIZE=10pt]
Культура шампиньона в ящиках
[/SIZE]

[SIZE=10pt]
Культура шампиньона в мешках
[/SIZE]

[SIZE=10pt]Низкая влажность воздуха и его сильное движение над поверхностью гряд (в результате мощного сквозняка или сильных порывов ветра) также ухудшают внешний вид грибов. Кожица на шляпках плодовых тел растрескивается и подсыхает, придавая им неприглядное зрелище.
Шампиньоны очень чувствительны к температуре и влажности среды. Они чрезвычайно не любят их перепадов. Поэтому, чтобы, уберечь уличную культуру от разницы между дневной и ночной температурами, ее укрывают на ночь утепляющим материалом (мешковиной).
В процессе сбора плодовых тел шампиньона необходимо поддерживать высокую влажность покровной земли. Для этого производят ее капельный полив из расчета: сняли 1 кг грибов — полили одним литром воды. При формировании плодовых тел в сухом покровном грунте они не достигают товарных размеров и веса, а поздний полив не спасает положение и приводит к тому, что мякоть их размягчается, сами грибы темнеют и гибнут спустя несколько дней.
Шампиньоны безразличны к свету и плодоносят в полной темноте.
За 2–4
 месяца в зависимости от условий выращивания можно собрать до 10–15[/SIZE] кг грибов с 1 м2. Плодовые тела, как правило, собирают в таком состоянии зрелости, когда пленка с нижней стороны шляпки, закрывающая пластинки, натянута или слегка треснула. Цвет пластинок под пленкой должен быть розовым. Старые перезрелые грибы с фиолетовым или темно-коричневым цветом пластинок в пищу употреблять не рекомендуется. В них накапливаются продукты распада грибной ткани, вредные для организма человека. Эти вещества могут повлиять на работу нервной системы и вызвать расстройство органов пищеварения.
По окраске кожицы шляпки разводимый в искусственной культуре шампиньон делят на 3 вида: белый, коричневый и кремовый. Коричневый и кремовый шампиньоны устойчивы к болезням и более урожайны, но в большей степени зависят от изменений условий окружающей среды (температуры, влажности) по сравнению с белым видом. Каждый вид следует высевать в компост отдельно друг от друга. Смешивание сортов-штаммов может привести к очень плачевным результатам: антагонизму во взаимоотношениях между грибами и возможному взаимоуничтожению.
Экспериментируя с различными штаммами шампиньона можно выбрать наилучший из них, подходящий для выращивания в конкретных условиях.
После окончательного сбора грибов компост можно использовать в качестве удобрения под цветочные, овощные и плодово-ягодные культуры, а также на корм скоту. В нем содержится много азота, фосфора, калия, микроэлементов, жизненно необходимых для роста и развития растений. В результате жизнедеятельности грибов и микроорганизмов в компосте накапливаются биологически активные (ростовые) вещества, обладающие уникальным стимулирующим действием. Сама структура компоста, будучи достаточно рыхлой, улучшает физические свойства почвы, усиливает ее водоудерживающую способность и благоприятно отзывается на протекании воздухообменных процессов в ней.
Помещение, где росли шампиньоны, следует очистить, вымыть, хорошо просушить и проветрить. Использованный компост представляет немалую угрозу последующим поколениям шампиньонов, поскольку может содержать возбудителей болезней и вредителей грибов. Поэтому его необходимо как можно скорее удалить из помещения. Сразу использовать помещение для выращивания следующей культуры шампиньона нельзя. Необходимо соблюсти определенные правила фитосанитарии. Для этого проводят дезинфекцию использованного инвентаря, стен и пола помещения. Инструмент замачивают на некоторое время в растворе хлорной извести (200–400 г извести на 10 л воды), а стены и пол опрыскивают ею.

[SIZE=10pt]Выращивание шампиньонов в открытом грунте с овощами[/SIZE]

[SIZE=10pt]Шампиньоны возможно, выращивать также вместе с капустой, свеклой, огурцами. До посадки, например, капусты в гряде делают ямки глубиной 30 см и шириной 60 см (диаметром). Их набивают компостом. Грибницу шампиньона высаживают на глубину 3–5 см. Способ посадки аналогичен описанному ранее. Грибницу прикрывают покровным грунтом. Вплотную к ямке высаживают рассаду капусты обычным, традиционным методом с таким расчетом, чтобы при ее окучивании не повредить грибницу. Благодаря большой поверхности листьев огородные растения создают благоприятные условия для развития шампиньонов, предохраняя их от излишней влаги и прямых солнечных лучей.[/SIZE]

[SIZE=10pt]Выращивание шампиньонов в городской квартире[/SIZE]

[SIZE=10pt]В квартире выращивают грибы на подготовленном вне ее стен компосте.
Из алюминиевых уголков делают каркас. В этом каркасе располагают один деревянный ящик, либо несколько друг над другом. Ящики опираются на подножки—бруски. Если для культуры используют несколько ящиков, то между ними соблюдают определенное расстояние — 30–50
 см. Под каждый ящик подкладывают противень. Размеры ящиков могут быть 75x50x14 см и 60x50x14 см. В дне ящиков просверливают несколько 15-миллиметровых отверстий (для вентиляции субстрата). Стенки и верх каркаса закрывают прессованным картоном, оставляя переднюю сторону открытой. Ящики набивают компостом, засевают грибницей и прикрывают газетами. Переднюю стенку каркаса закрывают полиэтиленом, но так, чтобы его в любую минуту можно было бы легко снять и обеспечить беспрепятственный доступ к культуре.
Через 15–20[/SIZE] дней культуру в ящиках прикрывают покровной землей. Каркас освобождают от изолирующих материалов. Чтобы обеспечить хорошую аэрацию пространства над ящиками воздух разгоняют при помощи вентилятора.
С одного ящика можно собрать 1,5–2 кг грибов.
Шампиньоны, помимо ценных пищевых качеств, обладают также целым рядом других полезных для человека свойств. Так, в результате испытаний вытяжек из плодовых тел грибов, установлено, что они тормозят рост золотистого стафилококка, возбудителей тифа и паратифа. В вытяжке из шампиньона желтеющего найден антибиотик капестрин, активно действующий против вируса гриппа. Сок, добытый из мякоти шампиньона обыкновенного является великолепным бактерицидным средством. Известно, что при эпидемиях тифа люди, регулярно принимавшие в пищу шампиньоны, избегали этого заболевания. В монгольской народной медицине шампиньон используется при отравлениях, особенно недоброкачественным мясом. Существуют рецепты лечения многих заболеваний в сочетании с другими растениями — кизилом, подорожником, черемухой. Приготавливают преимущественно водные настои и отвары.

 
сейчас нету- но сделать легко можно

 
Назад
Сверху